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GENERAL INTRODUCTION 

A photochemical method for the production of superoxide ion in 

aqueous solution is the subject of Part I. In Part II, this synthetic 

method is used in the study of 0^ and its electron transfer reactions 

with several Co(lll) complexes and ferricinium ion. 

In Part III, the reactions of several polyhalomethanes with the 

bis(dimethylglyoximato)cobalt(I I) complex are investigated. 
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PART I. A CONVENIENT ROUTE TO SUPEROXIDE ION IN AQUEOUS SOLUTION 
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STATEMENT OF THE PROBLEM 

The preparation of superoxide ion, 0^ , in aqueous solution is not 

a trivial problem. The stringent conditions of the working medium and 

the need for specialized equipment and techniques prevent superoxide 

ion from being as common a laboratory reagent as i t should be. 

It is intended to show that 0^ can readily be prepared in very good 

yields (>300 using conventional l ight sources such as a Hg arc lamp 

in a moderately short period of time (30 s) as well as producing some

what lower yields (~50 in a very short period of time (several ps) 

using the flash photolysis technique. This was accomplished by photo

chemical ly producing the triplet state of a ketone (acetone or 

benzophenone) in the presence of an alcohol (methanol or 2-propanol) and 

oxygen at pH > 11. 

The photolysis product was verified to be the superoxide ion by 

comparison of its UV spectrum and rates of disproportionation with those 

reported for authentic samples of 0^ . Finally, the yield of superoxide 

ion was examined as functions of l ight source, length of photolysis, 

flash energy, and alcohol and ketone concentrations. 
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INTRODUCTION 

The production of superoxide ion, 0^ , in solution has been a 

problem of interest to the chemist and biochemist for many years. The 

inherent instability of 0^ , especially in protic media, is but one 

complication.^ Another is the frequent need for specialized equipment, 

such as described in subsequent paragraphs of this section. Yet, in 

spite of these and other difficulties, several methods have been 

developed. 

For aprotic media, three practical methods for the preparation of a 

superoxide ion containing solution have evolved. 

Tetramethylammontum superoxide, NtCH^J^Og, was f irst synthesized 

2 
in 1964. This material is readily soluble in aprotic solvents (up to 

3\ 
0.05 H in CHjCN ) and provides stable solutions of 0^ , but there are 

limitations to this approach. The compound is not commercially avail

able and its synthesis is not trivial. The yields of the high purity 

product are low. Efforts to increase the yield result in a loss of 

puri ty. 

Potassium superoxide, KOg, on the other hand, is a material that 

is commercially available. Its use as a source of 0^ suffers 

4 5 
as i t is only slightly soluble in aprotic solvents. '  Despite this, 

it has been used successfully as a superoxide source in DMSO.^ 

Through the use of crown ethers as either solubilizing or phase 

transfer agents, KOg has become a powerful source of Og in solvents 

such as DMSO,^'® benzene,^ and toluene.'^ Unfortunately, this method 

is not without l imitations also. The purity of KO^ available is low 
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(96%) with KOH, KgOg, and as the major contaminants. No method 

of purification is presently known. The slow decomposition of the 

a 
crown ethers in these solutions is also of concern. 

A third method for aprotic media, and the cleanest, is the electro

chemical reduction of dioxygen in the presence of a supporting electro

lyte. First successful in DMSO,^^ this method has been extended for 

use in solvents such as DMF,'^' '^ and pyridine.'^ Electro

chemical generation of Og allows for its in situ preparation in the 

presence of substrate. This has proven most successful.'^ There 

are also some disadvantages with this technique. It requires electro

chemical apparatus, the fluxes of 0^ produced are low, and possible 

interferences from reactions with the electrolyte and the electrode 

exist. 

Several chemical and biochemical reactions have been demonstrated 

to produce superoxide ion in both protic and aprotic media. In many 

instances, the superoxide ion is a transient intermediate in the 

system, reacting further. There are a few, though, where Og is the 

final and persisting product. 

A number of enzymatic reactions have been used to generate 0^ in 

solution. The xanthine/xanthine oxidase system has been used success-

22 
fully in aqueous media. A number of biochemical reagents have also 

been used. A series of reduced flavins, including riboflavin, FMN, 

and FAD, when reacted with dioxygen, produce superoxide ion efficient-

ly.'2.23 

In aprotic media, significant amounts of 0^ have been produced 
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from the reaction of hydrogen peroxide and tetra-n-propyl-ammonium 

h y d r o x i d e .  T h i s  h a s  b e e n  d o n e  i n  p y r i d i n e , D M A , ' ^  a n d  D M F . A n o t h e r  

source of Og is the reaction of dioxygen with the dian ions of p-

hydroquinone or ascorbic acid.^^ 

The biochemical reactions aside, the above methods are not appli

cable to aqueous media. Electrochemical reduction of dioxygen in 

aqueous media results in complete reduction to HgOg (or HO^ ). The 

process can be stopped after the first reduction step to Og by addition 

of a surfactant such as triphenylphosphine oxide. This method has been 

26 
l imited to the assaying of biological fluids and crude homogenates. 

The slow infusion of aprotic solutions of 0^ into alkaline protic 

media has also been done but this is also a l itt le used method. 

For protic media, only two methods have proven highly successful 

in the production of 0^ in such media. Pulse radiolysis techniques 

1 28-33 
are well documented and will not be discussed here. '  Photochemi

cal methods are the other source of 0^ and will be examined in some 

detail as they bear directly on the studies here. 

A number of photochemical systems have been shown to produce 0^ 

34 
in aqueous media. Flash photolysis of formate-oxygen solutions and 

of HgOg solutions^^ have yielded superoxide ion. The continuous 

photolysis of water in the vacuum-UV at XI84.9 nm was demonstrated to 

36 
produce Og by its reaction with a superoxide dismutase. Recently, 

O 9 O 
the photolysis of aqueous formate and aqueous alcoholic solutions 

containing dioxygen have been used as sources of 0^ . 

The method of most interest to the study here is the photolysis 
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•jO 
of aqueous alcoholic solutions containing 0^. This is the technique 

39 
of Bielski et al. and is highly successful in generating significant 

fluxes of Og in short periods of time. Vacuum-UV photolysis of 

aqueous solutions containing varying amounts of ethanol produces the 

superoxide ion. The proposed mechanism leading to Og is given below 

in equations 1-9. 

HgO OH + H- (1) 

CHgCHgOH H CHgCHOH + H- (2) 

H. + CHgCHgOH ->• CHgCHOH + (3) 

•OH + CHgCHgOH -> CHjCHOH + H^O (4) 

H- + Og HOg (5) 

HOg + OH" Z HgO + Og" (6) 

CHgCHOH + Og ^ -0-0-CH(CHg)0H (7) 

.O-O-CHfCHgjOH + OH" -»-.0-0-CH(CH^)O" + H^O (8) 

•0-0-CH(CH^)0" -> Og" + CHgCtOjH (9) 

The superoxide ion results from the reaction of dioxygen with the 

a-hydroxyethy1 radical (a reducing radical) and those that follow. It 

certainly also does arise from the reaction of dioxygen with hydrogen 

atom (equation 5)> but this is the minor pathway. 

This method bases itself on the reaction of dioxygen with the 
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reducing radical species. In addition to the reactions given above 

leading to the a-hydroxyethyI radical, there are other ways of generat

ing it. Additionally, i t need not be the radical derived from ethanol 

but i t can be any a-hydroxyalkyl or aryl radical. This is the basic 

improvement to the method of Bielski et al. that is made. 

The triplet state of a ketone such as acetone or benzophenone can 

b e  p r o d u c e d  b y  U V  i r r a d i a t i o n  o f  t h e  s t a b l e  s i n g l e t  s t a t e . S i n c e  

most ketones absorb in the wavelength region of X200-300 nm, normal UV 

sources rather than special sources and glassware for vacuum-UV work 

can be used. This eliminates from Bielski's method the need for a 

more costly and much less convenient vacuum-UV apparatus and greatly 

simplifies the photolyses. 

The reason for excitation of a ketone to its triplet state is 

that these species have been demonstrated to be very efficient hydrogen 

ko 
atom abstractors. So-called "activated" hydrogens, such as the 

a-hydrogens of primary and secondary alcohols, are readily removed by 

the triplet state. As an i l lustration, excitation of acetone to its 

triplet state in the presence of 2-propanol results in the formation 

of two a-hydroxyisopropyl radicals, as shown in equations 10 and 11; 

The replacement of equations 10 and 11 for equations 1 through 6 

in Bielski's mechanism presents the alternative mechanism and method 

(CH3)2C0 (CH^igC-O ( 1 0 )  

(CH^igC-O + (CH2)2CH0H ^ ZtCHjJgCOH ( 1 1 )  
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for superoxide ion production. 

A second feature of this mechanism is that the reaction is 

catalytic. In equation 9, the final products from the internal elec

tron transfer are Og and a ketone or aldehyde depending upon the 

starting alcohol. Therefore, the ketone consumed in reaction 10 is 

recovered in equation 9. Moreover, for every 1 ketone consumed, 2 are 

returned. This allows the system presented here to remain essentially 

unchanged from Bielski's as a high concentration of ketone is not 

necessary. 

It is now the intention to show that UV-irradiation of a solution 

containing alcohol, ketone, and dioxygen will result in a good yield of 

superoxide ion. Additionally, the effect of such parameters as concen

tration of ketone and alcohol and the source of UV-radiation will be 

examined. 
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RESULTS AND DISCUSSION 

General Comments and Mechanism 

The use of acetone as the ketone sensitizer presents a possible 

complication. Ketones containing a-hydrogens will undergo self-reac

tion in the presence of strong base. This is the well-known aldol 

condensation. Since the majority of the experiments were conducted at 

pH greater than 11, the potential for complication exists. Fortunately, 

this was not the case. No change was observed in the UV spectrum of 

acetone during a 2-hour period when the ketone was subjected to the 

experimental pH conditions. Benzophenone does not present this problem 

either as it contains no ot-hydrogens. 

A second concern about the presence of ketone is that superoxide 

ion may possibly react with it. Although only an average nucleophile 

4l -
in aqueous solution, 0^ does attack the carbonyl carbon of organic 

kz-kk 
esters in aprotic media. There is also a report of the slow 

degradation of acetone in the presence of superoxide ion but no specific 

details were given.^ This also proved to be unimportant as the kinetic 

behavior exhibited by superoxide ion in its disproportionation reaction 

followed very clean second order kinetics (see below). This was found 

in the pH range 11.0-12.5. At higher pH, the decay of 0^ was faster 

than expected and not as well-behaved as in the lower pH work. This may 

be due to superoxide ion reacting with acetone and/or an impurity. 

Studies using benzophenone were not extended to above pH 12.5. 

Equations 12-16 present again the mechanism in operation here. 

Acetone and 2-propanol are also again used for i l lustrative purposes. 
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(CHgigCO (CHgigC-Ô ( 1 2 )  

(CHgigC-O + (CHgigCHOH -»• ZfCH^jgCOH (13) 

Og + (CH2)2C0H -V 0-0-(CH2)2C0H (14) 

.0-0-(CH2)2C0H + OH" -)• 0-0-(CH2)2C0" + H^O (15) 

.O-O-fCHgXgCO ^ 0% + (CH2)2C0 (16)  

The catalytic nature of this process is demonstrated by complete 

recovery of the starting ketone. The UV spectrum of the superoxide ion 

generating solution before photolysis and after photolysis followed by 

complete decay of Og to dioxygen and hydrogen peroxide are virtually 

identical. The entire procedure can be repeated again on the same 

solution because the starting ketone is recovered. Eventually, 

ketone will begin to increase in concentration as one alcohol is con

verted to one ketone in addition to recovering the original ketone. 

A second indication of the catalytic nature of the sensitization is in 

the benzophenone studies. Solutions containing 6 benzophenone 

routinely produced several hundred micromolar of Og . 

Another point to consider in this mechanism is in reaction 15. 

The presence of hydroxide ion is critical for two reasons. The f irst 

s and 

is that it retards 0« self-reaction as equation 17 has a rate <6 M 
_,30,45 

(17) 
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is thermodynamically unfavored while equation 18 occurs 

O2" + HOg = Og + HOg" (18) 

very quickly (k^g = 1.5x10^ ^ '  s ' )gg^ause it is con

sumed in equation 15, pH constraints must be very exact. The pH range 

of 11 to 12.5 was selected as changes in hydroxide ion would be minimal 

and the use of buffers would not be necessary. A second requirement 

for the presence of OH is the rate of equation 15. ot-hydroxyalkyl-

peroxy radicals decay by internal electron transfer at much less than 

diffusion controlled rates (10 s '  for the methanol derived species 

to 665 s '  for the 2-propanol derived spec ies ) .50 yheir conjugate 

bases, though, decay at very high rates. This complication may hinder 

the use of this method here to study HOg reactions as (1) the substrate 

may react with the peroxy radical f irst as i t  is long l ived enough 

under acidic conditions, and (2) the only rate observed may simply be 

the rate of electron transfer within the peroxy radical, the substrate 

acting only as an indicator of this process. 

Identif ication of Photolysis Product as Superoxide Ion 

Og has been wel1-characterized by numerous methods and consequent

ly, a l imited number of identif ication studies were done to prove the 

photolysis product to be superoxide ion. The two methods of identif i

cation selected were UV spectroscopy and measurement of the rate of 

loss of the photolysis product. 

Figure 1-1 compares the UV spectrum of the species generated during 

photolysis (l ine) with that taken from the l iterature as reported for 
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Figure 1-1. UV absorption spectrum of the long-lived metastable 
species produced by a 6-s photolysis of Ph2C0 (6.3 pM.) 
in 5.0 ^ aqueous 2-propanol at pH 12.5 (the absorbance, 
D, was measured in a cell of 2.00-cm optical path). The 
scales of D and of the decadic molar absorptivity, 

cm"', were matched by using [0%"] = 1.02x10"^ 14, 
calculated from the values of e g i v e n ^ O  for X 230-270 
nm; the latter are shown as solid points 
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an authentic sample of superoxide ion (blackened circles).The 

spectrum here was obtained by difference (making allowance for ketone) 

of a photolyzed and an unphotolyzed solution. The excellent agreement 

seen between the spectra in Figure 1-1 is one indication that the 

photolysis product is superoxide ion. 

Further support of the supposition that Og is the photolysis 

product was obtained by measuring the rate of disproportionation of 

the product and comparing i t  with l iterature precedent for 0^ .  Table 

1-1 contains the rate constants measured in this study. They were 

obtained by monitoring the loss of 0^ at A245 nm and then f itt ing the 

absorbance-time data to an integrated second order rate equation. 

Figure 1-2 presents a typical kinetic trace (l ine) along with the f itted 

data (darkened circles). The rate of disproportionation proved to show 

a second order dependence on superoxide ion concentration; i t  also 

proved to be independent of alcohol and ketone concentration. The same 

rate constant was found regardless of the method used to generate i t--

steady state or flash photolysis. 

Figure 1-3 presents the pH profi le of the disproportionation rate 

in the pH range 11.0-12.5. The rate constant k comes from the rate 

law given in equation 19. Consistent with earlier reports,the plot 

-d[0 •] 

---dl-- - k [°2 ] 

is l inear in this pH range. Also given in Figure 1-3 are rate con

stants measured in other studies of superoxide ion disproportionation. 

The dashed l ine is for aqueous solution^^ while the blackened circle 
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Table 1-1. Values of the second-order rate constants k for the O2 
disproportionation reaction®»'' 

Alcohol/ Sensitizer/ Photolys i  s pH k(M-l s-') 
concentration concentration method 

pH k(M-l s-') 

CH3OH/I.O M (CH3)2C0/0.0082 M Flash^ 11.1 (11.5)^ 113.1±2.5® 

2-PrOH/l.O M (CH3)2C0/0.0082 M Flash 11.1 (11.3) 72.6±0.9 

CH3OH/I.O M (CH3)2C0/0.0082 M Flash 11.2 (11.5) 80.9±4.3® 

2-Pr0H/1.0 M (CH3)2C0/0.0082 M Flash 11.2 (11.6) 47.9±0.7® 

2-PrOH/l.O M (CH3)2C0/0.0082 M Flash 11.3 (11.4) 53.8±0.6 

2-PrOH/l.O M (CH3)2C0/0.0082 M Flash 11.35 (11.5) 53 .OiO.5G 

CH3OH/I.O M (CH3)2C0/0.0082 M Flash 11.6 (11.9) 28.2iO.5e 

2-PrOH/l.O M (CH3)2C0/0.0082 M Flash 11.65 (11.8) 22.2i0.9 

2-PrOH/l.O M (CH3)2C0/0.04l M Flash 11.8 (11.9) 19.7±0.6® 

2-PrOH/l.O M (CH3)2C0/0.04l M Flash 11.8 (11.9) 23.0+0 .4 

2-PrOH/l.O M (CH3)2C0/0.0082 M Flash 11.9 (12.0) lO.8iO.2G 

2-PrOH/I.O M (CH3)2C0/0.04l M Flash 12.0 (12.1) 11.2+0.6 

2-PrOH/l.O M (CH2)2C0/0.04l M Steady state^ 12.0 (12.1) I1.8i0.4 

2-Pr0H/5.0 M (CH3)2C0/0.04l M Steady state 12.2 (12.4) 5.9±0.1 

2-Pr0H/5.0 M PhgCO/G.] yM Steady state 12.2 (12.4) 5.9i0.2 

2-PrOH/5.0 M Ph2C0/6.3 uM Steady state 12.3 (12.5) 7.5i0.1 

^X2k5 nm, T = 25.0±0.1°C, O2 saturated unless otherwise noted. 

^In addition to alcohol and sensitizer, solutions also contain 
-25 UM NAGEDTA. 

' 'See Experimental Section. 

^Value in parentheses is calculated pH and nonenclosed value is 
measured pH. 

®Air saturated. 

^See Experimental Section on photolyses employing Xe Plasma lamp. 
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Figure 1-2. Typical kinetic trace (l ine) for the disproportionation 
reaction of O2" at À245 nm. Conditions are 5.0 hi 2-
propanol, 25 Na2EDTA, 6.3 yM Ph2C0, pH 12.2, T = 
2k.Sk°C. Darkened circles are calculated absorbance-
time values from equation 20. Inset: Second-order 
kinetic plot of [02~]t vs. t[02"]t for absorbance time 
curve shown 



www.manaraa.com

17 

100 

50 

(/) 

#0 21 

I I  12 11.5 12.5 

pH 

Figure 1-3. Rate constant-pH profi le for the decay of the metastable 
02~ prepared with use of a ketone photosensitizer (6.3 
wfi benzophenone or 8.2-41.0 acetone) in aqueous alcohol 
(1 ^methanol or 1-5 ^2-propanol) after photolysis. The 
solid point at pH 11.6 is for 12 M ethanol,38 and the 
dashed l ine for aqueous solution#^ at -24°C. Kinetic 
measurements were made at A245-252 nm 
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at pH 11.6 (k = 22 ^ '  s ') is for 12 ^ ethanolic solution. The results 

here are approximately 20% higher than this latter value. This may be 

a solvent effect as a factor of approximately 2 is noted in the dis

proportion rate in aqueous formate solution as opposed to aqueous 
•jO 

ethanolic solution. 

These results substantiate that the species produced here is the 

superoxide ion. The modification of the Bielski method has succeeded 

in providing a convenient method for producing 0^ .  

Investigation of Factors Affecting the Yield of Superoxide Ion 

Studies involving the use of f lash photolysis to generate the super

oxide ion species were kept to a minimum. This technique is considered 

a specialized one and the intention here is to provide a general and 

very accessible method. The majority of the studies in this section wil l 

involve the use of common laboratory UV sources. 

Flash photolysis studies 

In Table 1-2, the results of the experiments using the flash 

photolysis unit are given. Figure I-4 presents a plot of the yield of 

©2 with successive flashes. 

The studies were conducted on air-saturated 1.0 ]M methanol or 2-

propanol solution containing 8.2 m^ acetone and -15 wM NagEDTA. The 

f lash energy was 25 J and all measurements were made at pH 12.5 to mini

mize loss of Og by disproportionation. 

Nearly identical yields are found whether a 5.0 or a 10.0 cm cell 

is used. This is because photolysis occurs across the cell for its 
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Table 1-2. Yields of O2 from flash photolysis^ 

Flash Yield O2", 

number 
5.0 cm eel 1 10.0 cm eel 1 

1. 1.0 M MeOH/0.0082 M MegCO/pH = = 12.5 

0 0.0 0.0 

1 50.8 ± 2.4 36.0 + 0.25 

2 73.5 ± 1.9 61.6 ± 3.4 

3 76.1 ± 2.3 69.7 ± 1.9 

4 57.7 ± 3.3 

2. 1.0 M Me2CH0H/0.0082 M MegCO/pH 

65.9 

= 12.5 

± 2.1 

0 0.0 0.0 

1 46.6 ± 2.2 41.6 ± 1.9 

2 64.5 ± 1.3 61.2 + 1.7 

3 64.4 ± 1.3 65.5 ± 2.4 

4 41.9 ± 3.5 51.1 + 3.4 

^See Experimental. 

' 'see Experimental Section. 
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Figure 1-4. Yields of superoxide ion produced by successive 25 J 
flashes on (A) air-saturated 1.0 ^ methanol solution, 
and (B) air-saturated 1.0 ^ 2-propanoI solution. Open 
circles are experiments done in 5.0 cm cell, solid 
circles for 10.0 cm cells. All solutions contain 8.2 

acetone and -15 MIM NSgEDTA 
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entire length as opposed to photolysis down the center of the cell. 

Use of either methanol or 2-propanoI also produces similar yields. Use 

of dioxygen saturated solutions should produce higher yields at each 

flash. 

The drop-off in yield at the fourth flash is a consequence of less 

and less dioxygen being available for reaction with the reducing radical 

(equation 14). The radical has opportunity now to react with 0^ (pro

ducing HOg most l ikely) and subsequently the yield falls off. This 

also occurs in the steady state photolysis experiments with prolonged 

irradiation for the same reason as above. 

Steady state photolysis experiments 

Three UV sources were examined--a Xe plasma lamp, a Rayonet photo-

chamber containing medium pressure Hg lamps, and sunlight. Additionally, 

the use of benzophenone as the ketone sensitizer was examined. 

Xe plasma lamp as source 

Several parameters were varied and their effect on the yield of 

Og was investigated using the Xe plasma lamp source. 

The distance at which the cell was placed from the Xe lamp has a 

marked effect upon the yield of 0^ .  Figure 1-5 contains two curves 

for photolysis at a distance of 1 cm from the lamp (circles) and at a 

distance of 3.5 cm (squares). The closer the lamp, the more efficient 

the photolysis as less excitation radiation is lost. There is a trade

off, though, in moving the cell close to this source. A large IR 

component also is present in the Xe lamp and the reaction cell has a 
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30Ô 
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Figure 1-5. Yields of O2 at varying distances from photolyzing source 
(Xe plasma lamp) —1.0 cm (squares) and 3.5 cm (circles). 
Solution was oxygen-saturated and contained 6.3 
PhgCO and 5.0 ^ 2-propanol, pH = 12.2 
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tendency to heat up, especially since several minute photolysis periods 

are required with this lamp for good yields. Note that these long 

photolysis periods are required even with the more efficient photo

sensitize r benzophenone (see below). 

Experiments were tried where the solution was continuously purged 

with dioxygen during the photolysis in the attempt to gain higher yields 

of Og .  Very curiously, the yields were much lower in the purged 

system rather than in the pre-saturated system. Figure 1-6 presents a 

plot of these data obtained on a 1.0 ^ 2-propanol solution containing 

41 mM acetone at pH 12.2. 

The effect the concentrations of alcohol and ketone have on the 

yields of Og was also examined. 

in a system where the acetone concentration was held fixed at 

0.041 the effect of the concentration of 2-propanol on the yield of 

superoxide ion was studied. The yield increased with increasing alcohol 

concentration up to 5.0 ^ and then began to fall off. Figures 1-7 and 

1-8 give plots showing how the concentration of 2-propanol affects the 

Og yield. As can be seen, 3.0 ^ and 7.0 ^ give almost identical yields 

while 1.0 ^ and 10.0 ^ give far less. Figure 1-8 gives the results for 

5.0 ^ only, which is considered as the optimum alcohol concentration in 

this system. 

The same variation was done with acetone concentration. Figure 1-9 

shows that increasing acetone concentration above 0.068 ^ nets l i tt le or 

no increase in superoxide ion yield. This is most l ikely because these 

experiments were conducted in 2.0 cm cells and an acetone concentration 
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Figure 1-6. Yields of O2 from continuously purged (circles) and pre-
saturated (squares) solutions containing 1.0 M 2-propanol, 
4l mM acetone at pH 12.2 
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Figure I-?. Yields of 0," vs. photolysis times at varying 2-propanoI 
concentrations: 1.0^ (o), 3.0 (•)» 7.0 (•), and 
10.0 ^ (A). Solutions are oxygen-saturated and contain 
41 mM acetone, pH 12.2 
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Figure 1-8. Yields of Og for a solution of 5.0 ^ 2-propano1 also con
taining 41 mM acetone, dioxygen saturated, pH 12.2 
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Mgure 1-9. Yields of Og" vs. photolysis time for solutions containing 
5.0 M 2-propanol and varying amounts of acetone: .041 ^ 
(0)7 . 049 M (A), .068 M (•), and .082 M (•), pH = 12.2 
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of 0.068 iM results in an absorbance in the UV of over 2.0 at i ts maximum 

wavelength. An absorbance of 2.0 corresponds to 99% l ight absorption, 

so more acetone in the system wil l result in no further photosens it iza-

tion. Therefore, 0.068 ^ acetone is considered the optimal working con

centration for a 2.0 cm cell. 

The f inal result then is a solution containing 5.0 ^ alcohol and 

0.068 ^ acetone for best results when using the Xe lamp. Perhaps mis

leading are the graphs. I t should be noted that the maximum yields are 

given in the Figures I-4 to 1-9. Photolyses at greater times than those 

plotted sometimes resulted in very minor increases in 0^ yields but 

usually resulted in a substantial loss of 0^ .  

Hg 1 amp as UV source 

Very l i tt le work was done on this UV source although i t proved high

ly efficient. Only two sets of experiments were tried, one employing 

benzophenone as sensitizer, the other employing acetone. Identical 

results were obtained. 

A standard Rayonet photoreactor was used. Figure 1-10 shows the 

results found using this UV source. The immediate feature to notice is 

the significant shortening in the required photolysis time, 30 s produc

ing almost 400 0^ .  This work was done using the optimal 2-propanol 

concentration of 5.0 ^ (see above). 

The result that shorter photolysis times are required is probably a 

consequence that irradiation occurs from all directions (the cell being 

suspended by a wire or placed upon a reflective platform) and hence the 
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Figure 1-10. Yields of O2' vs. photolysis time employing Hg arc lamp 
chamber as UV source. Solution contains 5.0 M 2-
propanol and either 6.3 Ph2C0 (o) or 41.0 acetone 
(•), dioxygen saturated, pH = 12.4 
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photolysis becomes more efficient. As happened with the Xe lamp, yields 

fell off sharply beyond 30 s. 

The Hg lamp system is a much more efficient system and is preferred 

over the Xe plasma lamp. Several reasons exist for this. First, shorter 

photolysis times allow for a better control of temperature as the cell 

need not be out of i ts thermostatting bath very long. Second, the IR 

component is much smaller in the Hg lamps and the chance of heating the 

cell is lessened greatly. Third, since irradiation is omnidirectional 

and not unidirectional, cell placement is not a crit ical concern. 

Use of sunlight as UV source 

Eighty-five of superoxide ion was produced in a cylindrical 

quartz spectrophotometer cell (2-cm optical path, 6-cm^ volume) held 

for ~5 min in direct sunlight when the cell was partially surrounded 

by shiny aluminum foil to act as a reflector. The solution contained 

6.3 pM. PhgCO and 5-0 2-propanol at pH 12.1. 

Concluding Remarks 

A very efficient method of producing superoxide ion has been found 

employing a number of commonly used UV sources. An additional feature 

of this method is the l i tt le modification done to the previous working 

solution. Small amounts of acetone and minute amounts of benzophenone 

are the only change made. 

The method is also very f lexible in that there is a choice in the 

alcohols that may be used as well as the variabil ity in their concentra

tions (the same is true for the ketone sensitizer). Also, the method 
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is mobile in that the 0^ may be generated in situ in the presence of 

substrate by f lash photolysis for fast reactions or i t can generate 

Og with the substrate to be added later as in the case of slower reac

tions. In Part I I of this thesis, both instances wil l be demonstrated. 
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EXPERIMENTAL 

Reagents 

Ail water used throughout these experiments was disti l led water 

further purif ied by either passage through a Mill ipore-Q fi ltering 

system, passage through a Barnstead PCS f i l tering system, or by triple 

disti l lation. 

Acetone (Aldrich Gold Label), methanol (Aldrich Gold Label), 2-

propanol (Aldrich Gold Label), KOH (Fischer Scientif ic), Na^EDTA 

(Mai I inckrodt), and PhgCO (Eastman Kodak) were all used without further 

purif ication. Oxygen (Air Products, 99.7%) was further purif ied by 

passage through a Koby Junior gas f i l ter. 

Equipment 

All glassware, including spectrophotometric cells, were carefully 

and thoroughly cleaned. The normal routine included chromic acid bath

ing followed by at least 7 disti l led water washings and 3 isopropanol 

washings. Drying was achieved by placing in an oven at 120°C. Spectro

photometric cells and syringes were allowed to air dry. 

Rubber septa were prepared for use by soaking overnight in either 

methanol or isopropanol, then washed thoroughly with disti l led water 

and allowed to air dry. Syringe needles were readied in a similar 

fashion. 

All UV spectral measurements were conducted on a Gary 219 spectro

photometer. Kinetic measurements were also made on this instrument. 

The pH of the solutions was measured using a Beckman pH meter equipped 
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with a glass electrode. Steady state photolyses were performed using 

a Sorenson Supply XL51 Xe lamp or a Rayonet Photochemical Reactor 

equipped with medium pressure Hg lamps. Flash photolyses were done on 

a Xenon Corp. f lash photolysis unit. 

Solution Preparations 

Acetone as sensitizer 

Approximately one-half the volume of the desired volumetric f lask 

was f i l led with water containing ~30 yM^ Na^EDTA. The pH was then 

adjusted by either addition of the solid KO H reagent or addition of a 

standardized (by KHP or standardized HCIO^) KOH solution. This was fol

lowed by addition of the alcohol and then water unti l approximately a 

2 mL volume remained. Acetone was then added, the flask brought to the 

mark with water, and the solution thoroughly mixed. All volumes above 

were delivered either by syringe or buret. 

The solution was used as is for air-saturated experiments. For 

oxygen-saturated experiments, a gentle flow of the gas was passed through 

the solution for 15 minutes. Care was taken to not apply too vigorous 

a purge as some acetone may then be lost. 

Benzophenone as sens i  t izer 

The above method was followed with one exception. The benzophenone 

was introduced in the form of a solution in the desired alcohol rather 

than adding the solid reagent. 
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Photolysis Experiments 

General 

All yields were calculated by recording the absorbance prior to 

photolysis at X245 nm and immediately after. Beer's Law, using 

^A245 nm _ 2350 ^ '  cm was used to calculate the concentration. 

Cells were prepared by rinsing and f i l l ing with the desired solu

tion. Thermostatting was done in a few instances, but the majority of 

the experiments were conducted at room temperature (23-27°C). 

Flash photolysis experiments 

The f lash photolysis was conducted with unfiltered UV-visible radi

ation from fast-extinguishing Xenon f lash lamps in the Xenon Corpora

tion's Model 710 system.^' Flash energies were normally 25-50 J. 

Steady state experiments 

Two sources were used. The f irst was a Sorenson Supply XL51 Xe 

lamp. The photolyzing radiation was passed through the cell lengthwise 

at a distance of 2-3 cm. Because of the time required in these experi

ments, the cell was rotated end for end every 30 seconds to prevent over

heating of the solution and cell. When this method was used for a 

kinetic trace, the cell was rethermostatted 5 minutes after photolysis. 

The second source was a standard Rayonet Photoreactor equipped with 

medium pressure Hg lamps. An aluminum foil covered stage was placed at 

the bottom of the reactor. The cell was placed upon this stage. 

Photolyses were then conducted. 
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Use of suniight 

Experiments were done by holding the cell by its neck in the sun

l ight on a bright sunny day. Crumpled aluminum foil was held behind 

the cell to act as a reflector. 

Kineti cs 

A 2.0 cm cell was rinsed and f i l led with the reagent solution and 

thermostatted for 25 minutes at 25.0t0.1°C. Superoxide ion was then 

generated photochemically by removing the cell from the water bath, 

wiping dry, and placing in the desired photoreactor. After photolysis 

was complete, the cell was returned to the water bath and then the 

decay of the superoxide ion was followed at \2k5 nm. 

The yield of 0^ was calculated by recording the absorbance at 

A245 nm before and immediately after photolysis. Beer's Law, using 

= 2350 i l  ̂  cm was used to determine the concentration of 
"2 

V-
The pH of the solution was measured before photolysis and at the 

completion of the kinetic trace, in all cases, pH recorded was lower 

than the expected pH, This was probably due to the alcohol present. 

The differences were not serious enough to generate any concern. 

The data were analyzed by nonlinear least squares analysis. Fits 

were made to two equations. The f irst was to the integrated standard 

second order equation 20 requiring the knowledge of the starting concen

tration of the superoxide ion, [0^ ]q. 

Dt = (Do + DmtOg'Jo kt)/(l + [Og"]^ kt) (20) 
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The second was to the integrated second-order equation given in equation 

21, where the need to know [Og is eliminated. Both equations give 

equally good f i ts. 

D; = D^+ (D^ - DJ/[1 + k/e) (D^ - Djt] . (21) 

The values of k/e at each wavelength were within 5% of the f irst f it 's 

results. 
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APPENDIX. SUPPLEMENTAL DATA 

Table l-A-1. Effect of distance from UV source^ on superoxide ion 
yield^'C 

f 
Distance^ Photolysis time® Yield 0." 

(cm) (sec) (yM) 

3.5 30 35.1 
3.5 60 61.9 
3.5 90 72.6 
3.5 120 95.1 
3.5 150 120.0 
3.5 180 135.0 
3.5 240 160.0 
3.5 300 180.0 
3.5 420 199.0 
3.5 480 180.0 

1.0 60 89.2 
1.0 120 145.0 
1.0 180 205.0 
1.0 260 218.0 

^Xe plasma lamp. 

'^Solutions contain 6,3 yM. PhgCO, 16 NagEDTA, 5.0 ^ 2-propanol ,  
oxygen saturated, pH = 12.2. 

' 'Data plotted in Figure 1-4. 

"^As measured from cell face to photolysis source. 

^As determined from absorbance at X2k5  nm (see Experimental). 
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Table l-A-2. Yields of superoxide ion as a function of alcohol and 
ketone concentrations^ 

[2-Propanol] [Acetone] Photolysis Yield 0» 
(M) W time (s) (p^) 

1. Acetone as Sensitizer 

1.05 .041 60 11.7c 
120 24.5c 
180 29.4c 
240 35.7C 
300 38.3c 
360 39.8c 
420 34.3^ 
480 35.1^ 

1.05 .041 120 42.8 
240 81.5 
300 109.0 
360 120.0 
480 133.0 
600 150.0 
900 145.0 

3.01 .041 30 56.6 
60 99.6 

105 150.0 
150 198.0 
300 214.0 
450 231.0 

5.0 .041 60 73.4 
120 128.0 
210 180.0 
300 190.0 
300 192.0 
300 218.0 
360 153.Od 
390 253.0 

^A11 solutions are oxygen saturated, contain I6 yM Na2EDTA, pH is 
between 12.0 and 12.4. UV source is Xe plasma lamp unless otherwise 
noted. 

^As determined from absorbance at X245 nm (see Experimental). 

' 'Continuous purge of 0^ during photolysis. 

' 'cell out of l ight path. 
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Table l-A-2. Continued. 

[2-Propanol] [Acetone] Photolys i  s Yield 0," 
(M) (M) t ime (s) (yM) 

5.0 .041 450 253.0® 
450 278.0 
450 284.0 
480 183.0® 

5.0 .041 4 88.5^ 
10 190.0; 
15 267.of 
20 344.of 
25 359.of 
30 390.of 

5.0 .049 60 134.0 
120 201.0 
240 262.0 
330 325.0 
420 198.0 

5.0 .068 30 82.6 
60 172.0 

150 289.0 
210 342.0 
240 287.0 
240 193.0® 

5.0 .082 30 91.5 
60 155.0 

120 243.0 
180 325.0 

7.0 .041 60 86.0 7.0 
120 164.0 
240 210.0 
360 186.0 
480 191.0 

10.0 .041 150 106.0 
300 150.0 
450 164.0 

®Cell extremely hot (overheated during photolysis). 

^Hg arc lamp chamber as UV source. 
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Table l-A-2. Continued. 

[2-Propanol] [PhoCO] Photolysis Yield O2 
(m) (wM t ime (sec) (y^) 

5.0 6.3 5 103.of 
10 190.of 
15 238.of 
20 329.of 
25 356.of 
30 383.of 
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PART II. SOME ELECTRON TRANSFER REACTIONS OF SUPEROXIDE 

ION IN AQUEOUS SOLUTIONS 
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STATEMENT OF THE PROBLEM 

The superoxide ion, 0^ ,  is an important species in many chemical, 

1-8 
biochemical, and biological systems and has therefore received 

If q-lî 
great attention. Numerous reviews '  of its properties and reac

t ivity have been made. The reading of such reviews reveals an area of 

superoxide ion chemistry that is l imited in detailed Information. Data 

concerning the redox chemistry of 0^ in aqueous solution appears rather 

scarce. Among the reasons for this are the inherent instabil ity of 

superoxide ion in aqueous and/or protic media and the diff iculty of its 

preparation in such media. 

Recently, a very clean and convenient method of producing super-

14 
oxide ion in aqueous solution has been developed in this laboratory. 

This presents then the opportunity to investigate 0^ and its redox 

chemistry, particularly its behavior as an outer sphere reductant. This 

wil l be examined through its reactions with a series of Co(ll l) amine 

complexes and ferricinium ion. 

Through such studies, i t  is also hoped to gain further understand

ing about the electron exchange process between dioxygen and superoxide 

ion in aqueous solution (equation 1): 

°2 + *°2' " °2~ • 0 ) 

In particular, i t  is desired to evaluate the electron self-exchange 

rate constant for this process. This is of interest because (l) no 

direct measurement of this value has been accomplished, (2) there exists 

a very large discrepancy in the values obtained by indirect means, and 
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(3) once determined, such a value can f ind uti l i ty in the evaluation of 

other self-exchange rate constants, such as those of metal I  op rote ins 

and related species and of other small molecules such as O^. 
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LITERATURE BACKGROUND 

Superoxide Ion as a Reductant 

The abil ity of superoxide ion to react as a one-electron reductant 

as shown in equation 2 has been demonstrated in both aqueous and non-

+2 
aqueous media. Among the examples in aqueous solution are Cu hydrate 

M+" + 0/ = + Og (2) 

and a variety of Cu(ll) c o m p l e x e s , the EDTA complexes of 

Fe(ll l) '^'^® and Mn(ll l), '^ and ferricytochrome C.^^ These reactions 

are believed to proceed via a nonouter sphere pathway involving inter

action of the metal center with superoxide ion prior to electron 

transfer. 

More relevant to the present studies are reductions following an 

outer sphere mechanism. Although rarer in occurrence than the nonouter 

Sphere type, they are known and wel1-documented. Examples include both 

organic and inorganic substrates. 

Tetranitromethane, CfNOg)^, is readily reduced by Og in aqueous 

21 solution as shown in equation 3. 

CtNOg)^ + 0^" = ClNOg)]" + NOg + O2" .  (3) 

22-24 
Quinones constitute a class of organic compounds also reduced by 

22 23 
superoxide ion. Benzoquinone, duroquinone, and 2,3-dimethyl-l,4-

23 
napthoquinone are three of the many quinones that have been investi

gated. These reactions are very rapid and yield the corresponding 

semiquinone and dioxygen. Inorganic complexes that undergo one-electron 
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reduction are Fe(CN)g"^/5 Mo(CN)g"^^^ and Ru(NH^)j isn^^.^? Table I 1-1 

summarizes the kinetic data for these reactions. 

Additional information about outer sphere reductions by superoxide 

ion can be obtained indirectly. Kinetic measurements on the reverse of 

equation 2, i .e., outer sphere oxidation by dioxygen resulting in 

superoxide ion production, have been made on a series of Ru(ll) amine 

28 29 +2^^ 
complexes '  and the Co(sep) complex. These data, coupled with 

the equil ibrium constant for equation 2 (determined from the standard 

reduction potentials with the E" for the Ogfaqj/Og couple taken as 

-0.16 allows the calculation of the rate constant for the for

ward reduction process. These calculated values are also given in 

Table 11-1. 

I t is evident that there are relatively few known reactions involv

ing superoxide ion as an outer sphere reductant. The importance of 

such data is that they can be employed in the calculation of the 

Ogfaqj/Og electron self exchange rate constant. This is accomplished 

through the Marcus correlation. 

The Marcus Correlation and Its Application 

32 
The Marcus correlation for outer sphere electron transfer re

actions predicts the relationship given in equation 4; 

*^12 (^11^22^12^) 

'°9l0^ kiikgz 
4109,0( Z2 ) 

The terms k^^ and k22 are the reactant electron self-exchange rate 
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Table l l-I. Summary of the second order rate constants for outer 
sphere superoxide ion reductions in aqueous solution 

Oxidant 

Qui nones 

Fe(CN)g"^ 

Mo(CN) 

RufNHgigisn ^ 

Ru(en) 

Ru (NHgi^phen*^ 

trans-[RufNHgj^isn(H2O) 

cis-[Ru(NH2)ij isn(H20)]"^3 

trans-[Ru(NHgj^isn(Cl)]^^ 

Ru(NH2)5(4-vinyl-py)+3 

Co(sep)+3 

'^12^— Reference 

1.9x10^ 21 

10^-10^ 22-24 

2.70x10^ 25 

3.0x10^ 26 

2.18x10® 27 

(1.57x10®) 29 

(2.0x10^) 28,29 

(1.3x10?) 28,29 

(3.5x109) 29 

(3.3x10®) 29 

(3.4x10?) 29 

(1.8x10?) 29 

(3.2x10?) 29 

(0.87) 30 

^Values in parentheses are calculated from the equil ibrium con 
stant K]2 of equation 2 and the second order rate constant for the 
reverse of equation 2, = kf/k^. 
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constants, is the one electron equil ibrium constant, and Z is the 

coll ision frequency (10^^ ^  ̂  s ^). 

One of the uti l i t ies of the Marcus correlation is its employment 

as a tool in the estimation of electron self-exchange rate constants 

that are diff icult to obtain by direct methods. This is done by 

determining the rate constant of a cross reaction where one redox 

partner has a known self-exchange rate constant. These data are then 

applied to equation 4, solving for f and k^ j (or ^.22) simultaneously. 

"2 " Q 
To i l lustrate this, the IrCl^ /IrCl^ system wil l be used. The 

electron self exchange rate constant for this system was estimated in 

1963 by applying the Marcus equation to data obtained for the cross 

reaction given in equation 5.^^ 

I r C l g  ^  +  F e t S . G - M e g p h e n j g * ^  =  I r C I ^  ^  +  F e t S f G - M e g P h e n ï g ^ ^ . t S )  

A value of 2.5x10^ M. ^ s ^ was calculated, in 1966, the exchange rate 

constant was determined by a direct measurement. The actual value 

5 _] _] 35 
proved to be 2.3x10 H s .  This example points out an important 

consideration when using the Marcus correlation. Predicted values are 

very often in fair agreement with experimental values but should not be 

taken as exact. This is because equation 4 is not an exact formulation 

as a number of approximations are built into i t. 

The Marcus correlation is not restricted to systems involving only 

transition metal complexes. A number of studies have been made involv

ing redox partners such as small molecules, inorganic radical anions, 

and organic radical cations. The Marcus correlation has successfully 
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been used in evaluating the electron self-exchange rate constants for 

the following systems: ClOgfaqj/ClOg";^^ NOgfaqj/NOg 

(SCNj^'/ZSCN";]? Igfaq)/!^";^^ Br^faqi/Br^'iSG'SS 

and the N-a1kylphenathiazine radical cations/N-alkylphenathiazines.'*^ 

The dioxygen-superoxide ion system has also been investigated in similar 

fashion. Table 11-2 summarizes the kinetic data for the Ogfaqï/Og 

system. 

In examining the column headed k^j, the calculated electron self-

exchange rate constant for Ogfaqï/Og , it is noted that these values 

are very far from being a constant one. This is one of the anomalies 

of superoxide ion chemistry. The failure of Marcus theory to predict 

a constant value for the exchange rate constant is a ques

tion not easily answered. 

A second feature to notice is that within a given series of reac-

tants (the Ru(li l) amine complexes and the quinones), a fairly constant 

value for k^j is found. Between the two series, though, there is a 3-4 

order of magnitude difference. This is a question that is also not 

read!ly explained. 

At present, the number of data points is rather l imited. The 

extension of Table 11-2 to other oxidants is required before any reason

able explanation can be made. The studies presented here take the 

f irst step in such an undertaking. 
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Table 11-2. Summary of the kinetic data on the reactions of superoxide ion in aqueous solu
tion applicable to Marcus theory for estimation of the C^faqj/Og" electron self 
exchange rate constant^ 

Oxidant k b 
*12 k ^ 22 

m
 0 Q.

 

K ^ K I2 f9 References 

Qui nones 1O6-1O9 

00 
0

 1 0
 -0,24 to +0.10 

-2  +4 
10 to 10 4 10^-10? 20.75 22,23,24 

FefCN)^-] 2.70x10% 5x103 0.37 9.6x10® 5.7x10-7 0.02 25 

Mo(CN)g-3 3.0x105 3.0x10^ 0.75 2.7x10^5 2.3x10-4 4.0x10-6 26 

Ru(NH2)gisn*3 2.18x10® 4.7X105 0.387 1.9x109 4.1x103 0.01 27,29 

Ru(NH3)6+3 2.0X105 4.0xl03 0.051 3.8x103 4.3X103 0.60 29 

RUTNHGÏ^phen^S 3.5X109 1.2x107 0.533 5.6x10^^ 1.6X103 1.1x10"3 29 

Co(sep)+3 0.87 5.1 -0.26 2.0X10"2 11.8 0.92 30 

^Reactions are written as Ox + = Red + O2. In cases where the actual data were pub
l ished for the reverse reaction, the forward rate constant was calculated from the equil ibrium 
constant K]2 = kf/k^. 

^Rate constant in jM ^ s '  for the cross reaction. 
c "" 1 ~ 1 

Exchange rate constant for the oxidant in ^ s 

"^Standard reduction potential in V vs. NHE for oxidant. 

^Equil ibrium constant for the cross reaction calculated from the standard reduction 
potentials. 

^Exchange rate constant for Ogfaqi/Og couple calculated from Marcus correlation. 

9f value obtained from Marcus correlation in the simultaneous solution of equation 4. 
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RESULTS AND INTERPRETATION 

Co(II I) Reductions 

The reduction of several Co(ll i) complexes by superoxide ion 

was examined in aqueous 1.0 ^ 2-propanol solution, pH 11.3-11.9. The 

experiments were conducted under pseudo-first-order conditions with 

the Co(ll l) reactant in excess. The superoxide ion was photochemi

cal ly generated in the reaction cell '^ (a 2.0-cm cylindrical quartz 

spectrophotometric cell) and reaction was init iated by the injection of 

the Co(ll l) complex into the cell. Loss of 0^ in the UV (A245-270 

nm) was used to monitor the reaction. The rate of superoxide ion 

disappearance was independent of wavelength and was complete within 

several minutes. Figures I 1-1, 11-2, and 11-3 show the dependence of 

kobs» the pseudo-first-order rate constant on [Co(ll l)]. In all 

studies, a l inear relationship is observed. 

A rate law consistent with such results is given in equation 6. 

-d [0_  ]  
— =  k ^ 2  [ C o f l l l j l f O g ]  .  ( 6 )  

Table 11-3 gives the second-order rate constants k^^ for the reactions 

of CofNHg)^*^, CofNDg)^*^^ Co(en)j^^, and Cotchxn)^*^ (chxn = trans-

1,2-diaminocyclohexane) with superoxide ion. Also included are the 

complexes Cotphen)^*^ and Co(CN)^ In the latter two cases, reactions 

proved to be either too rapid or too slow for accurate measurements and 

only upper or lower l imits of the second-order rate constants are pre

sented. For the complexes CofNHg)^*^, CoCen)^*^, and CoCchxn)^ ^, two 



www.manaraa.com

54 

10.0 

c/> 

60 

-8 

30.0 18.0 

[co(NH3)g^]xlo'^,M 

Figure I 1-1. Plot of the pseudo-first-order rate constants at 25.0°C 
vs. [Co(NH3)6+3] for its reaction with O2" in 1 M 2-
propanol, pH 11.3-11-9 under aerobic ( •) and anaerobic 
conditions (o) 



www.manaraa.com

55 

10.0 

0 
X 

1  

6.0 

20 

4.0 20.0 12.0 

|co(en)^^j X10^,M. 

Figure 11-2. Plot of the pseudo-first-order rate constants at 25.0°C 
vs. [Co(en)3^^] for its reaction with O2" in 1 ^ 2-
propanol, pH 11.3-11.7 under aerobic (•) and anaerobic 
c o n d i t i o n s  ( o )  
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Figure 11-3. Plot of pseudo-first-order rate constants at 25.0*C vs. 
[Co(chxn)2+3] for its reaction with O2" in 1^2-
propanol, pH 11.7 under aerobic (•) and anaerobic 
conditions (O) 
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Table 11-3. Summary of rate constants for the Co(ll l)-0„ reac
tions® 

^ 

63.9*1.7 (4) 2.04*0.09 

Complex T(° c) , (H-' s-') 

. ob 
Co(NH_),+j 34. 39 61.5±4.9 (2)C 

j  0 
25. 00 31.3*0.5 (16) 
10. 89 11.7 
9. 80 12.1 
2. 14 6.2 

+?d,e 
CofNDg)^ ^ 25. 00 28.4*2.0 (2) 

Co(en) +3^ 25. 00 23.8*0.4 (5) 
3 16. 81 14.8 

5. 40 6.5*0.6 (2) 

Cofchxn)]*^ 25. 00 16.4*0.3 (6) Cofchxn)]*^ 
15. 22 8.84 
9. 01 5.66 
6. 16 4.78 

Cofphenjg+S 25. 00 >10^9 

Co(CN) 25. 00 <39 

47.5*1.1 (6) 2.00*0.08 

3U2±O.4 (3) 1.90*0.06 

^In aqueous I  ̂  2-propanol, pH 11.3-11.9. 

'^Includes experiments with both chloride and perchlorate com
plexes .  

''Value in parentheses is number of individual experiments. 

' 'prepared in situ from CotNHg)^*^ (see text). 

^Experiment in >90% DgO. 

^Chloride complex used. 

^Uncertainties are 1 standard deviation. 
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No 
values are reported at 25.0 C, and The former refers to the 

reaction under aerobic conditions, while the latter refers to the reac

tion under anaerobic conditions. The last column in Table 11-3 shows 

No 0? 
that k^2 and k^^ are related by a factor of 2. 

The respective rate constants k^^ for CofNHg)^*^, Coten)^*^, and 

Co(chxn)g*^ are 31.3. 23.8, and 16.4 ^  ̂  s '  at 25.CC. These results 

are surprising in view of the differences in standard reduction poten

t ial of the oxidants. Coten)^*^ and Co(chxn)^^^ are very comparable in 

E°, -0.2k and -0.26 (vs. NHE), respectively. It would be ex

pected that they react at comparable rates and this is observed. 

CofNHg)^*^ has an E° value of 0.0 to +0.10 (some uncertainty in 

the E° value is due to the instabil ity of the species, see 

Discussion) and would therefore be expected to react at a greater rate 

than either of the two chelate complexes. The explanation for super

oxide ion's insensitivity to the nature of the oxidant is found in the 

electron self-exchange rate contants of the Co(ll l) complexes, 

Co(NH^)g^^ has an exchange rate constant of approximately 10 ^ IM ^ 

s Co(en)2^^ is a faster exchanging complex with k^^ = 2.4x10 ^ 

M-' s-'.47 A1 though not measured, Co(chxn),^^ probably exchanges simi-

^9 
larly to Co^en)^ and its electron exchange rate constant can be 

- C  _ 1  _ 1  

estimated at -10 ^ s also. This difference in exchange rate 

constants compensates for the difference in standard reduction poten

tials and the net result is the indifference displayed by 0^ with 

respect to the nature of the oxidants. 
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Deuterium and Solvent Effects 

As a probe of the outer sphere nature of these electron transfer 

reactions, studies were done in both H^O and >90% D^O as well as examin

es +3 
ing the rates of reduction of Co(NHg)^ and Co(NDj)g .  Within experi-

mental error, the CofNH^)^ reduction in H^O and the CofNO^)^ reduc-

- 1  - 1  
t ion in >90% D^O gave identical results—= 31.3 and 28.4 M s ,  

respectively. This is the expected result i f  an outer sphere mechanism 

were in operation and therefore confirms this suspicion. The cross 

experiments of in DgO and Co(ND^)g^^ in HgO could not be 

performed because of the rapid exchange of hydrogen and deuterium in the 

i»8 
ammonia l igand at these pHs (11.3-11.9). They would be expected to 

give similar results as above. 

+3 
Some comment is necessary on the CofNDg)^ in >90% DgO experi

ment. The perdeuterio complex was prepared in situ by allowing the 

normal complex to stand several minutes in >90% D^O at pH 11.7. This 

is more than adequate time to insure total exchange of the l igand 

hydrogens.This was the preferred source of CofNDg)^^^ as experi

ments employing CotNDgi^tCIO^)^ lead to extraneous results. Rate con

stants 25-30% higher than anticipated were obtained when the solid com

plex was used as a source of either CofNCy)^*^ or Co(NH^)g^^. I t is 

believed this compound introduced some impurity into the system result

ing in the faster than expected rates. These results are rejected. 
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Physical and Chemical Effects 

Selection of basic (pH 11.3-11.9) media 

The criteria for this l ie in the fact that the l ifetime of 0^' in 

aqueous/protic media is highly pH dependent, decreasing with lower pH.^^ 

At the chosen pH values, Og is sufficiently long-lived (on the order of 

several minutes to an hour for the f irst half-l i fe) to be conveniently 

worked with. The decay rate is so sensitive to pH that the measured 

second order rate of decay was used in many instances as a "pH meter" 

to indicate the reaction medium's pH level. 

Because of the need for basic media, the choice of the Co(ll l) com

plexes was restricted. The complexes studied undergo base hydrolysis 

very slowly at these pHs, and therefore provide no side reactions as 

+2 
would occur i f  CofNHgïgBr were chosen. Additionally, the pKa values 

of the selected complexes are several units greater than the solution's 

pH and only one reactive species was therefore present in solution. 

i t is not surprising to find no pH effect on the rate constants. 

I t is diff icult to envision any acid-base equil ibria in this system, 

particularly at the pH levels employed here. At very high pH, conjugate 

base possibil it ies could arise. At lower pH, equation 7 could become 

competit ive with the reduction process. 

O2" + HOg = Og + HOg" .  (7) 

Neither of these situations is expected to occur in these studies. 
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Presence of Complexing Anions 

Because of the design of the experiment, highly concentrated (>0.1 

fl) stock solutions of the Co(il l) reagent were sometimes needed. This 

required the use of the chloride salt of as the perchlorate 

salt proved too insoluble. Free CI had no effect upon the rates of 

reduction as identical values were obtained when using CofNHgj^fClO^)^ 

or CofNHgj^Clg. The same holds true in the Coten)^*^ system. The only 

noticeable effect the presence of CI had upon the system was the 

background absorbance was higher than when ClO^ was present. This is 

attributed to the formation of weak ion pairs and their absorbance con

tribution in the UV. This does not occur with perchlorate present as 

i t  is a poor complexing anion. 

Activation parameters 

As shown in Table 11-3» these reductions were also studied as a 

function of temperature. In Table 11-4 are given the enthalpy and 

entropy of activation for these reactions as calculated from the Eyring 

equation (see Experimental). 

The close similarit ies in the values of AH* and AS* for the three 

Co(I I  I) complexes is a further indication of a common mechanism shared 

by all three. With regard to the magnitude of the values, there are 

no surprises. The values are typical of bimolecular reactions. 

Effect of oxygen on the system 

The presence and/or absence of dioxygen in the system has no 

direct effect upon the rate determining step of electron transfer 
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Table 11-4. Activation parameters for superoxide ion reductions of 
Co (I II) amine complexes^ib 

,  ^^ 
omp ex kcal/mole kJ/mole cal/mole K J/mole K 

11.3±0.4 47.2*1.5 -13.8*1.2 -57.8* 5.1 

Cofen)]*^ 10.5*0.7 44.1*3.0 -16.9*2.5 -70.7*10.5 

Cofchxn)]*^ 10.4*0.2 43.4*0.8 -18.2*0.7 -76.2* 2.7 

a « 1 1 _. I c r ! J. !  __ I, 2 'As calculated from the Eyring equation using k^g-

^For reaction in aqueous 1 M 2-propanol, pH 11.3-11.9. 

although i t does have an effect upon the rate constant. This is because 

the presence of dioxygen dictates the course of the subsequent reac

tions. 

As is evident in Figures 11-1, 11-2, and 11-3, the loss of 0^ is 

faster in the anaerobic systems. Comparison of the slopes of the l ines 

in these figures (see Table 11-3) indicates that superoxide ion is lost 

twice as fast when dioxygen is absent. The relationship, then, between 

°2 ^2 . "^2 °2 

"^12 "^12 *^12 ~ ^ *^12' 

Both superoxide ion and dioxygen are capable of reoxidizing the 

Co(ll) product of electron transfer. Under aerobic conditions, di'-

oxygen was init ially present in an ~10 fold excess over superoxide ion 

(-1 mM vs. -100 y ). This excess is sufficiently great enough to 

scavenge (reoxidize) the Co(il) species. When the level of dioxygen 

is very close to zero (anaerobic conditions), the Co(ll) species is 

reoxidized by superoxide ion. This brings about the situation where 
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one or two superoxide ions is consumed per electron transfer step. The 

presence of dioxygen oversees this. 

Mechanism of the reaction 

Equations 8-11 outline a plausible reaction sequence for the super

oxide ion reductions investigated. The superscript M refers to "mecha

nism" in order to avoid confusion with k,, used in the Marcus equation. 

+3 kg + 
CoLg J + Og - ^ CoLg + O2 (8) 

.M 
+2 9 +2 

CoLs " C°L(6-n) + (9) 

k" 

C°L(6-n)*' + °2" Pz • "" 

The f irst step is outer sphere electron transfer between Co(ll l) and Og .  

This step is essentially irreversible although in the Marcus correlation 

consideration, i t  is assumed to be reversible. The irreversible nature 

of the electron transfer stems from the fact that outer sphere oxidation 

of Co(ll) complexes is much slower than inner sphere oxidation. The 

sequence of equation 9 followed by either 10 or 11 wil l occur at a rate 

+2 
faster than the reverse of 8. As an example, for the CofNH^)^ oxida

tion by Og, the rate constant is calculated to be 1.2xl0'^ s ^. This 

is significantly smaller than values expected for kg, k^^, and k^^. 

The second step, equation 9, is expected to be very rapid. The 

loss of l igands upon reduction of various Co(ll l) amine complexes has 

been studied and in acidic solution, this process has been found to be 
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very The studies were not extended to the basic pH range, 

but i t  is sti l l  reasonable to expect that one or more of the coordina

tion sites on the Co(ll) species is replaced by a solvent molecule. 

Complete decomposition of the Co(ll) complex to Co(ll) hydroxo 

species is not anticipated because of the dioxygen studies (see above). 

+2 
If reaction 9 were complete to Co hydrate, then no effect due to 

+2 
dioxygen would be expected as Co hydrate is not oxidized by either 

dioxygen or superoxide ion and the rate of 0^ loss should be the same 

under both anaerobic and aerobic conditions. In acidic solution, 

three ammonias are immediately lost upon reduction (t^yg '  ysec) of 

Co(NH^)^^^. In basic solution, i t  is uncertain whether or not three 

are also lost as the driving force of protonation of the ammonias is 

now absent. The loss of one ammonia or opening of one coordination 

+2 
site is definite as outer sphere oxidations are too slow for CoL^ 

complexes (see above). Replacement of two coordination sites by solvent 

is also a definite consideration. Loss of three nitrogens about the 

Co(I I) center would probably not lead to stable Co(ll l) products 

after reoxidation; therefore, n is most l ikely 1 or 2 in equation 9. 

Reactions 10 and 11 are substitution of solvent by Og or Og fol

lowed by inner sphere oxidation. The products Pj and Pg are unidenti

f ied but are believed to be Co(ll l) complexes containing either bound 

superoxide or peroxide ions. They most l ikely undergo further reaction 

to more stable products. 

Some comment can be made on the relative values of k^^ and k^^ 

from the oxygen experiments. The observation that a 10-fold excess of 
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dioxygen can completely overcome reaction 11 indicates that can be 

no greater than k^g but could be significantly smaller, i .e., k^j*^ < k^g. 

A second observation is that in both anaerobic and aerobic systems, 

clean pseudo-first-order kinetics were seen through three half-l ives. 

This is of importance because at the f irst half-l i fe's end, the con

centrations of Og and 0^ should be very close to one another, and i f  

, M M 
10 ~ 11' then deviations in the kinetic traces should be observed as 

the rate of the loss of 0_ would be changing from 2k, to k , • Since 
2 obs obs 

this is not seen, the conclusion is k'j ' j  > k^^. These two statements 

are in obvious contradiction to one another. 

The explanation for all of this is the statement k'j ' j  = 3 k^^. This 

satisfies all the observations above. The 10-fold excess of dtoxygen 

would sti l l  effectively scavenge the Co(il) species i f the ratio of 

rate constants is three or possibly four. The expected competit ion 

between dioxygen and superoxide may not be observed because of this 

ratio and also because many of the reactions followed produced small 

absorbance changes (<.2). Consequently, the competit ion may be too 

small to detect and the floating of the D-infinity value during analysis 

may further hide i t. In any event, k'!j '^ is most l ikely on the order of 

3 (or 4) t imes that of k^^. 

To quantify reactions 10 and 11, there are several l i terature 

precedents. Oxygen uptake studies and oxidations by dioxygen involving 

Co(ll) amine complexes have been investigated. Second order rate 

constants for these reactions were found to be in the range 10^-10^ 

s I  ̂  ;  g reasonable, then, to assign k'^j '^ a similar value. 
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This, in turn, assigns a value also in the range 10^-10^ ^ '  s 

Very few Co(1 I)-superoxlde ion reactions have been studied. Those 

that have been involve Co(ll) complexes containing macrocyclic l igands 

and rate constants have been reported between 10^-10® 1^ ^ s This 

is obviously too high for the prediction here. This is not serious, 

though, as the macrocyclic nature of the complex may lead to enhanced 

reactivity and as a consequence, higher rate constants for its reaction 

with Og .  it is then with good confidence that the above assignment 

of rate constants is made. 

Other Co(ll l) Complexes 

Two other Co(il l) complexes were briefly examined. CofphenXg*^ 

was found to react very rapidly with 0^ ,  the reaction essentially be

ing complete within the mixing time (~5 s). A lower l imit of 1.0x10^ 

-1 -1 
^ s is assigned this reaction based on a 1 second half-l i fe and 

[ C o( I I I ) ] q = [Og ]q = 1.1x10 ^ On the other hand, Co(CN)^ ^ reacted 

very slowly with 0^ .  A 13-fold excess of Co(ll l) (sufficient enough 

in the earlier studies to easily overcome the disproportion reaction 

of Og ) had no effect on the system, 0^ decaying by self-reaction at 

its expected rate. A 40-fo1d excess led to slight perturbation in the 

second order decay kinetics of 0^ and f irst order behavior was far 

- 1 - 1  
from being evident. An upper l imit of 3 iM s is assigned this reac

tion based on the assumption of greater than a 100-fold excess of 

Co(CN)^ ^ is required to overcome 0^ self-decay and that CofNH^)^*^, 

with k^2 = 31.3 i l  '  s overcomes 0^ self-decay at a 10-fold excess. 
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These results are in accord with the expected behavior of these com

plexes—Cotphen)^*^ is an excellent oxidant while Co(CN)^ ^ is a 

rather poor one. 

Ferricinium Ion Reduction 

The reaction between superoxide ion and ferricinium ion, CpgFe* or 

Fc^, is a more complicated system than the Cofll l j-Og system discussed 

previously. This is because the pH constraints are more r igid, the 

reaction is several orders of magnitude faster, and side reactions now 

exist that must be compensated for. 

The pH level of these experiments is the most crit ical aspect in 

the CpgFe^ studies. The pH must be in the basic range for two reasons. 

The f irst is to enhance the l ifetime of 0^ by preventing reaction 7*'^ 

O2" + HOg = Og + HOg" .  (7) 

The second and more important reason is that i f the pH level is too low, 

formation of superoxide ion from the a-hydroxyisopropyl- and a-hydroxy-

diphenylmethyl-peroxy radicals may be too slow to prevent reaction with 

FeCpg*. These processes are base catalyzed^^ and i f insufficient 

base is present, the peroxy radicals may be long-lived enough to react 

with substrates present in the system. This was not a problem in the 

Co(ll l) systems as the 0^ was generated prior to the addition of the 

Co(ll l) complex. In the FeCpg* studies, i t  is a concern as the 0^ 

is generated in the presence of the ferricinium ion (see below). 

Another consideration in the selection of pH was ferricinium ion's 

instabil ity at high pH. CpgFe* is stable only in acidic solution and 
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undergoes a complicated decomposition to several products in the 

- 58 59 
presence of OH .  '  The rate of decomposition increases with in

creasing pH. This works against the above arguments in pH selection. 

Fortunately, the decomposition is not very rapid until very high pH is 

reached. It was found that pH 11 is a very good pH to conduct these 

experiments. At this pH, 0^ is very rapidly produced from the pre

cursor peroxy radicals and CpgFe* is decaying at such a slow rate that 

1 or 2% of the starting ferricinium ion is lost. 

The experiment was studied using the flash photolysis technique. 

In addition to being an easy approach to the studies, i t  is one of the 

few viable methods with which the studies could be made. This is be

cause of the very rapid reaction between 0^ and CpgFe* = 8.2x10^ 

- 1  - 1  
^ s ). Flash photolysis is ideally suited for reactions such as 

these. 

The experiment consisted of adding a known amount of OH to a solu

tion of CpgFe* in acid such that the final pH = 11. The reaction cell 

was then transferred to the flash photolysis instrument and reaction 

init iated by photochemically producing Og .  The loss of CpgFe* at 

X6l7 nm was followed although this was the excess reagent. This was 

done because UV monitoring of Og was not possible. Between 5-6 piM 

0^ was produced. 

The working concentration range of CpgFe* was l imited to a maximum 

concentration of -100 This is because CpgFe* reacts at diffusion 

controlled rates with the a-hydroxyalkyl radicals^^ used to generate 

Og from Og. By keeping CpgFe* at these concentrations, i t  ensures that 
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the majority of the radicals wil l react with dioxygen. This is because 

in dioxygen-saturated solution, the concentration of 0^ is ~I mM. Since 

i t ,  t o o ,  r e a c t s  a t  d i f f u s i o n  c o n t r o l l e d  r a t e s , t h i s  - 1 0 - f o l d  

excess makes certain that the radicals wil l react with Og and not 

CpgFe*. 

The data (see Appendix) obtained in these studies are plotted in 

Figure 11-4. The slope of the l ine is (8.6^0.3)xlO^ ^  ̂  s \  These 

results were obtained at T = 25.0*C in 1.0 ^ 2-propanol. 
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Figure 11-4. Plot of pseudo-first-order rate constants at 25.0°C vs. 
[FeCp2^] for i ts reaction with O2" in 1 ^ 2-propanol, 
pH 11.0 under aerobic condit ions 
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DISCUSSION 

The Ogfaqï/Og Self-Exchange Rate Constant 

Among the primary reasons for the undertaking of the studies pre

sented here was to add further data to Table 11-2 which summarizes the 

known reactions involving Og as an outer sphere reductant that have 

applicabil i ty to the Marcus correlation. Table 11-5 is such an exten

sion using the information obtained here. 

The calculated k^^ values are typical of values obtained in other 

studies, i .e., the expected constancy in k^^ is absent. I t  is less than 

satisfying to see that 13 orders of magnitude are covered. Even less 

desirable is the three order of magnitude spread between two very close

ly related complexes—CofNHg)^*^ and Cofen)^*^. With the studies 

accomplished here, the problem of the inconstancy of k^ for the [^(aq)/ 

Og exchange rate constant appears even less resolved. Before discuss

ing possible explanations for this anomaly, some comment on the data in 

Table II-5 is necessary. 

The E° value given for CofNHg)^*^ is an accepted and commonly used 

44 
standard reduction potential. Values as low as E°=0.00 V have also 

been reported for this potential. Reasons for the question surrounding 

the CofNHg)^^^/*^ couple's potential l ie in the fact that the Co(l l) 

complex is labile and unstable. This does not al low measurement of i ts 

potential without complication. I f  the lower value of 0.00 V is used 

in conjunction with the data in Table 11-5, the k^ ^ from the COCNH^)^ 

experiment is 2.3x10^ M '  s '  (f=0.82). This value is closer to the 
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Table 11-5. Calculation of the 02(aq)/02 self exchange rate con
stant uti l izing data for the Co(l l i) and Fe(l l l) 
systems®»'' 

Oxidant 1^22^ *^12^ "^11^ 

CotNH^)^*^ 31.3 10"7 o.ioj 2.55x10^ 6.2x10^ .62 

Co(en)2+3 23.8 2.4xlO"5^ -0.24^ 4.4x10"^ 5-7x10® .94 

Co(chxn), ^ 16.4 -- -0.26'" .020 

FeCpg* 8.6x10^ 5.7x10*" 0.55" l .OSxlo'^ 1.2xl0"^ .01 

^Aqueous 1.0 ^ 2-propanol solution. 
b "" Reactions are written as Ox + O2 = Red + 0„. 
c  - 1 - 1  

Rate constant for cross reaction in M s .  
d  - 1 - 1  

Exchange rate constant for the oxidant in M_ s 

^Standard reduction potential in V vs. NHE of oxidant. 

^Equil ibrium constant for the cross reaction calculated from 
standard reduction potentials (E° Ogfaqj/Og" = - .16V). 

^Exchange rate constant for Ogfaqj/O " couple in ^  ̂  s ^ calcu
lated from Marcus correlation. 

*^f value corresponding to in solution of Marcus correlation. 

'Reference 46. 

J Reference 45. 
k 

Reference 47-

^Reference 42. 

"^Reference 43. 

^Reference 63. 
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Cofen)^ ^ value and is more in l ine with the observation that a related 

series of complexes (quinones and Ru(l l l) amines) generate a constant 

value within themselves. Therefore, because of the uncertainty in 

E° value, ^ from data l ies in the range 6.2x10^^ to 2.3x10^ 

s ' K  

The reason no k^^ value is given for the Cotchxn)^*^ complex is 

that i ts electron exchange rate constant is not known. The assumption 

of a similar k^^ value to Co(en)^^^ results in a k^^ for Ogfaqi/Og 

of 6.15x10® ^ ^ s ^ ( f  = .91). This is not surprising in view of the 

+3 +3 
fact that for al l  columns in Table 11-5, Cofen)^ and Cofchxn)^ 

have very similar values. 

Now, to turn to the problem of why Marcus theory fai ls in i ts 

application to the 02(aq)/02" system. The f irst point to address is 

the reaction i tself, given again in equation 12. 

Ox + Og = Red + Og .  (12) 

I t  has been demonstrated that in certain reactions of superoxide 

ion, the product is singlet oxygen rather than the more stable tr iplet 

oxygen.If this were the situation in the studies given in Tables 

11-2 and 11-4, then the k^^ results are erroneous as the incorrect E° 

values were applied. This is not the situation though. From thermo

dynamic arguments, i t  can be shown that the oxidant must have a 

standard reduction potential of greater than 0.78 V, the E" for reac

t ion 13. 



www.manaraa.com

74 

'Oz + e" -> Oz" .  (13) 

Since only Mo(CN)g ^ has a potential this great, this argument cannot 

account for the very large spread in the values. 

The possibil i ty that some of the complexes in' Tables 11-2 and 11-4 

do not react in an outer sphere fashion is another valid argument. 

The majority of them do, though, so this does not completely solve the 

problem. There is some reason to believe that the quinones may react 

through superoxide ion directly attacking the r ing structure of the 

compounds. Ferricinium ion may also be questionable as the complex is 

not "closed shell", i .e., there is an available coordination site on the 

metal center. Nucleophiles have been shown to attack the iron center 

in CpgFe*. In any event, el imination of these complexes from consider

ation in evaluating the Ogfaqj/Og exchange rate constant does l i t t le 

to improve the situation. 

A standard explanation when the Marcus correlation behaves poorly 

is the question of adiabaticity in the system. Adiabaticity is defined 

as the probabil i ty that the electron transfer within the activated 

complex for both the cross reaction and the exchange reactions is 

equal to unity. Values less than unity can arise because of poor orbi

tal overlap and/or a mismatch in the overlap. This is a possibil i ty 

in the Ogtaqj/Og system because of dioxygen's unique electronic struc

ture. 

Another point to consider is the change in solvation upon electron 

transfer. Regardless of the direction of reaction 12, a large change 
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in solvation occurs about the 0^ or 0^ species. This goes against one 

32 33 
of the assumptions in the derivation of the Marcus correlation. '  

It is assumed that both species remain essential ly unchanged after the 

electron transfer with respect to coordination and solvation spheres. 

The results and arguments above can have two f inal interpretations. 

The f irst, and more negative view, is that the anomalous behavior ob

served for the kp value for the Ogfaqj/Og exchange rate constant has 

not been resolved and only further complicated. A more posit ive view 

is that the evidence is indicating a fai lure on the part of the Marcus 

correlation. I t  is unfortunate that the Marcus correlation has proven 

so successful in the past. I f  success with the Marcus correlation had 

been a more rare event, the concern over the Ogfaqj/Og exchange rate 

constant problem might not be as great. 

I t  is possible that the Marcus correlation is not well-suited for 

reactions where one or both redox partners are small molecules or in

volve small molecules as products. As mentioned in the Introduction, 

a number of small molecules other than Og have been involved in Marcus 

theory applications with success. The success factor here though is an 

area that requires further investigation. None of these other small 

molecules have been subjected to as wide or varied a study as Og. 

Extension of these studies may lead to similar anomalies as In the 

0^(aq)/0^ case. 

Applications of the Ogfaqj/Og Exchange Rate Constant 

Applications of the Ogtaqj/Og exchange rate constant have a two

fold purpose. The f irst is to allow calculation of other unknown 
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electron self-exchange rate constants. The second is a further test 

of the Marcus theory in applications involving small molecules and 

very large molecules, such as metalloproteins. 

in Table 11-6 are given some known electron transfer reactions 

of Og with other small molecules or anions and one bioinorganic 

species. At present, i t  is not certain i f  al l  of the reactions fol low 

outer sphere pathways. For the sake of argument, i t  shall be assumed 

they do. 

Table 1 1-6. Some superoxide 
and anions and 

ion reactions involving small 
large molecules 

molecules 

Reaction k,2 (M"' s"b References 

Br^ + 0/ = Br,- + 0^ 5.6x10® 67 

O3 + 0 -  = O3- 4. 0, 1.52x10^ 68 

CO3" + 0^" -  CO + Oj 1.5x10% 69 

ClOj + Oj" = ClOj" + Oj 2.5x10? 70 

+2 + 
E 'Cu + Og = E 'Cu + Og 

(bovine copper-zinc 
superoxide dismutase) 

71 

Br^ and 0^ most l ikely fol low an outer sphere mechanism. I t  is 

diff icult to imagine the benefits (thermodynamic or energetic) 

the reaction would gain by going inner sphere. CO^ and ClO^ can 

quite easily proceed through inner sphere pathways although this has 

not been definitely proven. 
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The last consideration, that of bovine copper-zinc superoxide dis-

mutase, is an interesting example, mostly from the point of view that 

i t  is quite large in size. Study^' has been done on the mechanism 

of i ts reaction with 0^ and arguments supporting both inner and outer 

sphere pathways can be presented. Application of i t  to Marcus theory 

may help resolve the matter. 

Conclus ion 

As a f inal comment on the studies here, the need for more reactions 

involving 0^ as an outer sphere reductant is needed. Questions st i l l  

exist concerning Marcus theory and small molecules, not only Og but 

many others. Signif icant study has been done and is a contribution to 

the solution. Further evidence has been added to eventually help arrive 

at a logical conclusion on this point. Secondly, i t  is also meant to 

demonstrate the ease and accessibil i ty of this laboratory's method of 

superoxide ion production. I t  has successfully been used in the study 

of reactions that would have, in the past, required sophisticated 

instrumentation. I t  is hoped that such a demonstration wil l  al low others 

to study similar reactions and/or to f ind uti l i ty in this laboratory's 

method of 0^ generation. 
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EXPERIMENTAL 

Reagents—All Experiments 

The complexes Co(NH^)gClCo(NH^)^(Cl0^)CofNO^iaCl^.^B 

CofenjgClg,^^ Co(en)2(C104)2,^^ Cofchxni^Clg'HgO,^^ CofphenjgfClO^)^,^^ 

82 83 
K^CO(CN)^, and Cp^FePF^ were prepared according to l i terature 

procedures. (Eastman Organic), 2-propanol (Aldrich Gold 

Label), KOH (Fisher Scientif ic) and NagEDTA (Mai 1inckrodt) were used 

without further purif ication. 

All water used in these studies was disti l led water fol lowed by 

passage through a Mil l ipore Q f i l tering system. All gases used were 

passed through 5 M. KOH to remove trace CO^ impurit ies and then through 

HgO, fol lowed by passage through two U-shaped drying tubes containing 

Drieri te. 

The superoxide ion used in these studies was generated in situ 

14 
by photochemical means. 

Equipment—All Experiments 

All glassware, including spectrophotometric cells, were carefully 

and thoroughly cleaned. The normal routine included chromic acid bath

ing fol lowed by at least 7 disti l  led water washings and 3 2-propanol 

washings. Drying was achieved by placing in oven at 150°C. Spectro

photometric cells and syringes were allowed to air dry. 

Rubber septa were prepared for use by soaking overnight in either 

methanol or isopropanol and then thoroughly washed with disti l led 

water and allowed to air dry. Syringe needles were readied in a 
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similar fashion. 

All UV-visible spectral measurements were made on a Gary 219 

spectrophotometer. Kinetic measurements were also made on this instru-

84 
ment as well as a Xenon Corp f lash photolysis instrument. When the 

latter was employed, data were collected and stored on a Nicolet 

digital izing oscil loscope. 

Reagent Solutions—Co(ll l) Reactions 

The superoxide ion generating solution was prepared in the fol low

ing manner. A 2.0 Lstock solution of 2-propanol (1.1 ^), benzophenone 

(6-10 y^), and NagEDTA (25-50 y^) in disti l led water was prepared and 

used for several weeks. To 9 parts this solution was added 1 part 

standardized KO H to produce a 1.0 ^2-propanol solution, pH 11.3-11.9 

dependent upon the concentration of the KOH stock solution. This solu

t ion was then saturated with dioxygen by passing of a vigorous f low of 

the gas through i t  for at least 20 minutes. 

The Co(i l l) reagent solutions were prepared by dissolving the 

solid in a 1.0 ^2-propanol solution at the desired pH. (pH was 

identical for the two stock solutions within a given set of runs.) 

I t  was oxygen saturated. Solutions over three hours old were 

discarded. 

Fresh reagent solutions were prepared daily. 

FeCp^^ Reactions 

A reagent solution of CpgFe* in perchloric acid/2-propanol was 

prepared by dissolving the solid CpgFePF^ reagent in 0.02 ^perchloric 
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acid in HgO. 10.0 mL of this solution was added to a stock solution 

similar to that used for the Co(l l l) reactions such that the f inal 

concentration of al l  components were as fol lows: CpgFe* (27-110 ,  

2-propanol (1.0 M), (.002 M ) ,  Ph^CO (15-20 yM), and Na^EDTA (25-

50 Solution was oxygen saturated in the same fashion for the 

Co(l l l) experiments. These solutions were prepared fresh just prior 

to immediate use. 

Methods, Procedures, and Data Treatment 

Co ( i l  I) reactions 

To a 2.0 cm quartz spectrophotometric cell (thoroughly purged with 

Og) was added 5.4-6.0 mL of the superoxide ion generating solution, the 

exact volume being determined by the amount of Co(i l l) reagent solution 

to be added. The f inal volume after mixing was 6.0 mL. In some cases, 

a 1.0 cm cell was employed. Volumes used then were 2.8-3.0, f inal 

volume being 3.0 mL. 

The cell was thermostatted 25 minutes at 25.0°C and 45 minutes 

for al l  other temperatures. I t  was removed from the bath, wiped 

dry, and placed on an aluminum covered stage in a standard Rayonet 

chamber. The cell was irradiated for no more than 35 seconds (exact 

length of t ime photolyzed being noted) by l ight emitted from the 

medium pressure Hg lamps. Cell was then returned to bath. 

The amount of 0^ produced was determined in two manners. The 

f irst was a direct method. Absorbance before and after irradiation was 

recorded. The concentration was then calculated from Beer's Law using 

0?" -1 -1 
the fol lowing epsilons: X245 nm, e = 2350 M. cm ;  X260 nm. 
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e 2 _ iggg ^ '  cm ^ ;  and X270 nm, e ^ = 1480 '  cm ' .  The second 

method uti l ized the caibration curve given in Figure 11-$. Nonlinear 

least squares analysis produced the relationship [0^ = 3.30 t .  

Prior to every set of experiments, a check run was performed. This 

simply consisted of measuring the rate of superoxide ion disproportion-

ation and comparing i t  to the expected value. Solutions were accepted 

as good i f  the calculated second order rate constant from equation 14 

- 1  - 1  
was in the range 32.0-40.0 s ,  pH 11.7. 

Dt = (Dq + [Og'j^ kt)/( l  + [Og'l^kt) .  (14) 

In fact, the calculated rate constant was then used as the measurement 

of pH of the solution. Rate constants outside this range resulted in 

the preparation of new stock solutions. 

Those experiments requiring an anaerobic atmosphere were purged 

at this point. While st i l l  located in the constant temperature water 

bath, the cell and solution were purged with a strong and steady f low 

of dinitrogen for several minutes. After purging, the concentration 

of Og was determined spectrophotometrically as detailed above. 

Reaction was init iated by injection of the Co(l l l) reagent solu

t ion using either standard syringes or microsyringes. The loss of 0^ 

was fol lowed at X245 nm, X260 nm, or X270 nm, depending upon the back

ground absorbance. Identical rates were observed regardless of monitor

ing wavelength. 

The reactions were fol lowed unti l  3 0 %  or more of the reaction was 

complete. Whenever possible, the reactions were fol lowed to completion. 
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Figure 11-5. Calibration curve of O2" yield vs. photolysis t ime for 
1.0 ^ 2-propanol solution (pH 11.7) containing 4.6 pM 
Ph2C0 and 19.21 Na2EDTA. Solutions are also saturated 
with 0%. Photolyses conducted in 2.0 cm cell at T = 
25.0°C. Line is drawn through origin with slope = 3.30. 
The number above a given data point is the number of 
individual measurements at that photolysis t ime 
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In some instances, most notably in the CofNHg)^*^ reactions, the f inal 

absorbance reading was impossible to attain due to a slow secondary 

reaction that set in near the end of the f irst reaction. When this 

occurred, f inal absorbance reading was estimated by eye. 

The data for these reactions were analyzed by subjecting them to 

nonlinear least squares analysis. The check runs were f i t  to a second 

order expression (equation 14) while the Co(l l l) reactions were f i t  to 

a f irst order expression (equation 15). 

Df = + (Dq - D„) exp (-k^bst) (15) 

Good to excellent f i ts of the data to these expressions were noted in 

al l  cases through at least the f irst three half- l ives. Whenever the 

comparison was possible, calculated and experimental f inal absorbance 

readings agreed very well. 

The second order rate constants for the Co(l l l) reactions were 

obtained also by nonlinear least squares analysis. Data of the sort 

kobs vs. the average Co(lN) concentration were f i t  to the equation 

y = mx + b. The intercept b of this expression proved to pass through 

the origin within experimental error. Consequently, the data were re

analyzed with the expression being f ixed through the origin. 

Activation parameters were also obtained similarly to the above 

analyses by f i t t ing to the Eyring equation (equation 16). 

k/T = R/Nh exp ( ^!j! + ^|—) (16) 
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Cp^Fe^ reactions 

Two routines were fol lowed in the preparation of the reaction 

cell.  The f irst involved reaction in 2.0 cm cells. Equal volumes 

(3.0 mL) of the Cp Fe^ reagent solution in .002 M and 1.0 M 2-

propanol and .004 ^ OH in 1.0 2-propanol were added to the quartz 

spectrophotometric cell (both solutions already thermostatted). This 

produced a f inal pH level of 11.0. Mixing took no more than 10 seconds 

and within the next 10 seconds, the cell was placed in the f lash 

chamber and reaction init iated. 

The second and more accessible routine consisted of f i l l ing a 5-0-

cm quartz cell with the FeCpg* solution and then thermostatt ing. A 

small volume (.625 mL) of a concentrated OH solution was added such 

that the solution's f inal pH was also 11. The cell was then photo-

lyzed. This routine was sl ightly faster than the f irst method. 

The f lash photolysis was conducted with unfi l tered UV-visible radi

ation from fast-extinguishing xenon f lash lamps in the Xenon Corpora-

82 
t ion's Model 710 system. Flash energies ranged from 25 J to 100 J. 

Typically 25 J were used. No effect due to the f lash energy was noted 

except for sl ightly higher transmittance changes with higher energies. 

A Nicolet digital izing oscil loscope was used to record and hold the 

transmi ttance change, recorded at X6l7 nm (Cp2Fe^= 256 ^ '  cm The 

loss of FeCp^^ was fol lowed even though this was the excess reagent. 

This is because of the f lash photolysis instrument's inabil i ty to moni

tor UV bands. The amount of 0^ produced ranged from 4 to 6 piM, as 

calculated from the transmittance charge. 
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The data were transferred to and stored on magnetic disc. Analysis 

consisted of taking the voltage vs. t ime readings and submitt ing them 

to nonlinear least squares f i t t ing of a f irst order expression. Con

version to absorbance was not performed as the voltage changes proved 

small enough. The second order rate constant was determined by f i t t ing 

the k , values vs. the ferricinium ion concentration with the l ine 
obs 

f ixed through the origin. 
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APPENDIX. SUPPLEMENTAL DATA 

Table l l-A-1. CofNHg) 6"'  + °2" 

T(°C) Compound® [Co(l11)] 
xl04, M 

[02"], [Co(lII)] 
x104, M 

kobs*]0^> 
s-lb 

(a) Under Og^ 

25.02 
25.01 
24.98 
24.96 

CI 
CI 
CI 
CI 

2.53 
2.53 
2.53 
2.53 

33.0 
33.0 
33.0 
33.0 

2.36 
2.36 
2.36 
2.36 

(4.671.40) 
(5.50*. 52) 

6.971.32 
6.82±.24 

25.00 
25.02 
24.99 
24.96 

CI 
CI 
CI 
CI 

5.03 
5.03 
5.03 
5.03 

49.5 
49.5 
49.5 
49.5 

4.78 
4.78 
4.78 
4.78 

(11.01.4) 
13.41.4 
15.21.7 
15.61.8 

25.02 
25.04 

CI 
CI 

8.26 
8.26 

66.0 
66.0 

7.93 
7.93 

25.41.7 
21.6*.3 

25.04 
25.04 
25.04 

CIO4 
CIO4 
CIO4 

9.96 
9.96 
9.96 

115.5 
115.5 
115.5 

9.38 
9.38 
9.38 

(26.011.0) 
30.411.6 
30.412.2 

25.00 cio^d 10.7 115.4 10.1 30.11.2 

25.01 ClO.d 11.0 115.4 10.4 28.0±.l 

25.02 
25.03 
25.04 
25.05 
25.04 

CI 
CI 
CI 
CI 
CI 

16.2 
16.2 
16.2 
16.2 
16.2 

82.5 
82.5 
82.5 
82.5 
82.5 

15.8 
15.8 
15.8 
15.8 
15.8 

(35.0*1.6) 
(36.211.4) 
43.411.8 
46.9*2.8 
48.7*3.1 

24.98 CI 22.3 99.0 21.8 (47.4*2.9) 

24.98 
24.98 
24.95 

CI 
CI 
CI 

27.9 
27.9 
27.9 

115.0 
115.0 
115.0 

27.3 
27.3 
27.3 

86.8*3.1 
90.713.3 

(118.0*20.0) 

34.39 
34.39 

CI 
CI 

8.35 
8.35 

71.3 
86.6 

79.9 
79.2 

46.313.4 
51.513.5 

10.89 CI 8.35 84.1 79.3 9.261.44 

®C1 = Co(NH3)6Cl3; CIO4 = Co(NH3)6(C10ij)3.  
^Less rel iable values in parentheses. 
CpH 11.3-11.9.  
dSol vent is >90% C^O. 
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Table l l -A-1.  Continued 

T(°C) Compound^ 
[ C o ( l I I ) ]  
x104, M 

[Og-],  [ C o ( l I I ) ]  
x104, M 

kobsxlO^, 
s-LB 

9.80 Cl 10.3 99.2 9.80 11.9^.34 

2. 14 Cl 8.35 67.0 8.01 4.931.27 

(b) Under 

25.05 CIO4 4.03 68.1 3.69 21.8±1.3 
24.99 CIO4 8.07 52.6 7.81 50.9±2.6 
25.05 CIO4 10. 1 70.5 9.73 58.2±2.7 
25.04 CIO4 14.1 52.6 13.9 (65.9*1.7) 
25.01 CIO4 16.1 58.3 15.8 106.0±6.4 
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Table l l-A-2. CoCen)^^^ + 0^ 

T(°C) 
[Co(l11)] [O2"], [Co(l11)] kobs*^0 ,  
xlO^, M xlo4, M s-1* 

(a) Under 02^' 
,c 

25.06 3.29 63.2 3.00 9.04±.5 
25.00 6.05 93.6 5.58 14.1±.3 
25.01 6.05 63.2 5.73 14.2±.6 
25.01 9.04 101.3 8.53 19.4±1.3 
25.04 11.3 102.7 10.8 25.4±1.4 
25.03 17.9 99.7 17.4 41.3+2.0 

16.81 7.79 94.3 7.31 10.8+.5 

5.40 7.79 80.1 7.38 4.44+.20 
5.37 7.79 79.4 7.39 5.10±.35 

(b) Under 
,d 

24.98 5.15 62.6 4.99 20.9±1.0 
24.97 8.58 41.6 8.48 37.0±3.0 
25.05 10.3 61.0 10.15 51.0±.4 
24.99 13.7 51.8 13.57 62.3+.5 
24.97 17.2 47.3 17.08 83.9±.4 

a 
Less rel iable data in parentheses. 

b 
pH, 11.3-11.7. 

c 
Data for Cofenj^Cl^. 

d 
Data for both CoCen)^ Cl^ and CoCen)^ (010^)3. 
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Table l l -A-3. Co(chxn)^ + O2" 

Tf°r^ [Co(l I I ) ]  [02']. [Cod I I ) ]  kobsXlO^ 
I V  v y  

xlo4, M xlo4, M 

(a) Under Og^ 

25.06 2.13 34.8 1.96 3.43+.22 
24.98 2. 13 32.1 1.97 3.52±.31 
24.97 4.24 61.5 3.93 6.52±.40 
24.96 4.71 114.9 4.13 (10.1±0.3) 
25.00 6.56 101.4 6.24 10.2±0.6 
25.02 6.56 61.5 6.26 9.47±0.81 
24.97 9.13 64.9 8.82 15.0+0.7 

19.10 5.40 75.7 5.02 (25.5+2.7) 

15.22 5.40 61.2 5.09 4.50±.08 

9.01 5.40 62.2 5.09 2.88±.32 

6.16 5.32 64.2 5.00 2.39±.14 

(b) Under N2^ 

25.00 2.64 50.5 2.51 7.54±.31 

24.98 3.97 65.2 3.81 11.7±.89 

24.97 4.87 30.1 4.79 15.2±1.3 

a 
Less rel iable data in parentheses. 

b 
Cl compound, pH = 11.7. 
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Table 11-A-4. Data for calibration curve (Figure II-
photolysis t ime®'" 

5), [Og ]  vs. 

Photolys i  s 
t ime (s) [OgT], yM 0

 1 

3 8.8 8.8 

5 17.6 17.6 

6 18.3 18.3 

7 24.4 24.4 

8 23.8 23.8 

10 30.7, 32.1, 33.2, 34.3, 34.8 33.0+1.7 

15 45.5, 49.3 47.4*2.7 

17 55.3 55.3 

20 61.2, 61.5, 61.5, 62.2, 64.9, 66.6, 75. 
79.4 

1, 66.6*7.0 

22 70,6, 80.0 75.3*3.3 

25 75.7, 81.4, 86.8, 89.1, 99.2, 99.2, 99. 2 90.1±9.5 

28 93.2 93.2 

30 88.5, 91.9, 94.9, 98.9, 100.7, 101.4 96.1*5.1 

35 94.9, 96.6, 98.7, 102.8, 106.6, 109.4, 
111.8, 112.1, 112.6, 113.5, 114.0, 114, 
114.9, 115.7, 115.7, 116.2, 116.4, 117. 
121.3, 121.6, 123.0, 123.0, 123.3, 131. 
131.5, 132.1 

9, 
5, 
4, 

115.1*9.8 

40 128.3 128.3 

^pH 11.7, 1.0 M 2-propanol, 4-6 wM PhgCO, 19-21 pM Na^EDTA, 2.0-
cm cell,  excitation wavelength Â254 nm. 

'^Data give the fol lowing equation: [O2 ]  = 3.30 t  + 0.0. 
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Table l l-A-5. FeCpg* + 0^-a.b 

Flash energy (J) [FeCpg^l, UM 
-2 -1 

kobs*'0 . s 

25 28.6 2.64+.01 
25 28.6 (3.58±.02) 

25 57.5 4.50±.13 
50 57.5 4.68±.03 
25 57.5 5.36+.12 
50 57.5 5.53±.19 

25 75.0 (4.67+.06) 
50 75.0 5.63±.04 
50 75.0 5.95±.05 
25 75.0 6.14+.09 

25 78.3 7.11±.09 
25 78.3 7.45+.11 

25 104.0 (6.36+.37) 
25 104.0 8.68+.15 
25 104.0 8.79±.21 

= 25.0±0.5°C, pH = 11.0, 1.0 M 2-propanol. 

^^Og ]  = 4-6 

' 'Less rel iable data in parentheses. 
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PART I I I .  REACTIONS OF BIS (DIMETHYLGLY0XIMAT0)C0BALT(. I  I  )  

COMPLEXES WITH POLYHALOMETHANES 
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STATEMENT OF THE PROBLEM 

I t  is proposed that one of the key reaction steps in the overall  

mechanism of the polyhalomethane-organocobaloxime(I  11) (Figure I  I  1-1) 

reaction is the reaction of the polyhalomethane with the cobaloxime(I  I )  

species. A number of l i terature precedents exist to suggest and support 

such a reaction, but no direct studies on this reaction have been made. 

i t  is intended to examine this reaction in some detai l ,  including: 

(1) The rates of reaction between a series of cobaloxime(I  I )  complexes 

and the polyhalomethanes CCl^^, BrCCl^, CBr^, and CHBr^ in acetone and 

benzene, (2)  the effect due to the nature of the axial  base of the 

cobaloxime(1 I )  complex, and (3) the effect due to temperature (activa

t ion parameters).  

The radical nature of the mechanism wil l  be probed through the use 

of known radical scavenging agents. This aspect permits a further 

examination through computer modeling of the proposed reaction sequence. 
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Figure I I  1-1. Molecular structure of an organocobaloxime, where 
R = alkyl or aryl group 
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HISTORICAL BACKGROUND 

Halogen atom abstraction from organic halides by transit ion metal 

containing complexes has long been of interest in inorganic and 

organometal1ic chemistry. However, this reaction has recently drawn 

attention from the f ield of organic chemistry, in particular the area 

of organic synthesis. The reaction of various organocobalt (I M) com

plexes with organic halides such as polyhalogenomethanes,' aryl and 

2 3 alky I  sulphenyl halides, and a -halogenoesters to produce organic com

pounds are proposed to occur by a free radical mechanism involving 

halogen atom abstraction by a transit ion metal complex as a key step. 

The transit ion metal containing complexes used in these syntheses 

are the bis(dimethylglyoximato)complexes of cobalt.^ The general 

structures for the f ive-coordinate cobaloxime(I I), as they are commonly 

referred to as, and the six coordinate cobaloxime(M I) are shown in 

Figure I I 1-1. The predominant feature of al l  cobaloximes is the pseudo-

macrocyclic r ing structure about the cobalt ion center formed by the 

two dimethylglyoximato chelates. The structure of the cobaloximes 

is very similar to that of another cobalt containing complex, the 

naturally occurring Vitamin molecule (Figure I I  1-2).^ In the co

enzyme, the cobalt ion center l ies in a corrin ring structure consisting 

of four pyrrole units. I t  is not surprising that the similarity in 

structure leads to similarity in chemical and physical properties such 

as reactivity patterns and because of this, chemistry of the cobaloximes 

are considered in many instances to be models of the chemistry of 

Vitamin 8^2» or cobalamins as they are often referred to as. 
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HgN 

y\ \ _(f Cyanocob 
-cr 0 

,nh. 

,ch, 
ch, 

Cyanocobalomin 
mw= 1355 

dHgOH (C^H„N,4P0„C0) 

Figure I I  1-2. Molecular structure of vitamin B]2. The posit ive charges 
of the cobalt(I I  I) ion are balanced by the negative 
charges on the corrin r ing, the cyanide, and the phosphate 
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One property of the cobaloximes, and also of the cobalamins is the 

abil i ty to form very stable organocobalt( I  I  I )  complexes containing a 

cobalt-carbon sigma bond. Although thermodynamically weak, several 

factors contribute to the stabil i ty of the organometall ic bond. Loss 

of the o-bound carbanion l igand is not a faci le process as the cobalt  

is in the substitutionally inert oxidation state of three. The macro-

cyclic or pseudomacrocyclic r ing structures kinetically stabil ize the 

organometall ic complexes by occupying the coordination sites adjacent 

to the cobalt-carbon bond, preventing the approach of a displacing 

l igand to the carbanion l igand. 

The organocobaloximes(111) may be prepared in a variety of methods. 

Schrauzer^ f irst synthesized methy1(pyridine)cobaloxime(I I I )  by the 

reaction of dimethyl sulphate and (pyridine)cobaloxime(I) ,  formed by 

the reduction of (pyridine)coabloxime(I I )  and sodium borohydride. 

This earl iest method is the current method of choice for most organo-

cobaloxime(I  I  I )  preparations. The use of alkyl halides has supplanted 

the use of the dialkylsulphates. Recently,  an organocobaloxime(I  I  I )  

synthesis was devised by Randaccio et  al .^ involving the inorganic 

chloro(pyridine)cobaloxime(l I  I ) ,  nitromethane, and si lver( I )  oxide. 

This reaction leads to the formation of nitromethy1(pyridine)co-

baloximeCl I  I  )  .  

The cobaloxime(I  I )  can also be employed as the start ing reagent in 

organocobaloxime(I  I  I )  syntheses. I t  is the reaction of cobaloxime(I  I )  

and organic halides, in particular the polyhalogenomethanes, the study 

presented here concerns i tself  with.  
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The production of organocobaloxime(M I) from cobaloxime(1 I) and 

organic halides proceeds by a two-metal center overall one-electron 

change oxidative-addit ion reaction, as shown in equation 1. 

2ML + RX = RML + XML .  (1) 
n n n 

The products of this reaction are the organometal1ic product and an 

inorganic halocomplex. This oxidative-addit ion process differs from 

the more common one-metal center overall two-electron change oxidative-

addit ion in that the organic halide is fragmented between two metal 

centers, yielding two products, rather than adding across one metal 

center, as shown in equation 2. 

ML^ + RX = R(X)ML^ .  (2) 

The two-metal center overall one-electron change oxidative-addit ion by 

which the cobaloxime(l l) and organic halide react is not unique to the 

cobaloxime(11), but occurs with a variety of cobalt (11) containing 

complexes as well as other transit ion metal containing complexes. 

One of the earl iest cobalt (11) containing complexes to be shown to 

undergo oxidative-addit ion with an organic halide was the pentacyano-
o 

cobaltate (M). In 1964, Halpern and Maher added benzyl bromide to a 

water-methanol solution of pentacyanocobaltate(I I) result ing in the 

formation of the pentacyanobenzy1cobaltate(I I  I) anion and various in

organic pentacyanocobaltates(I I  I), including the bromo complex. The 

preparation of the pentacyanomethy1cobaltate(I I  I) was also accomplished 

employing methyl iodide in the place of benzyl bromide. 
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Since the init ial preparation of the pentacyanoalky1 cobalt-

ates(i l l), an entire series of these organometa11ic anionic complexes has 

been synthesized from the pentacyanocobaltate(II) and organic halides. 

9 10 
Kwiatek and Seyler, '  also in 1964, prepared such pentacyanocobalt-

ates(l l l) as the al lyl and crotyl derivatives, the acrylonitr i  te deriva

t ive, the phenacyl and a-propiophenone derivatives, and various l inear 

alkyl derivatives such as the methyl, ethyl and propyl as well as the 

branched alkyl isobutyl derivative. Also organometal1ic pentacyano

cobal tates ( 11 I  ) containing alkyl groups bound through bridgehead 

carbons, such as the 1-adamantyl ' '  and 1-(2,4-dimethyl-bicyclo[2.2.2]-

12 octyl) complexes among others have been prepared. All of these com

plexes were prepared, as mentioned earl ier, from the corresponding organ

ic halide, usually the bromide or iodide, and pentacyanocobaltate(I 11). 

A mechanistic study of the reaction of pentacyanocobaltate(lI) and 

various organic halides such as halo substituted carboxylic acids, 

esters, amides, methyl sulfonates, and alkyl and benzyl halides has been 

13 14 
done. '  The results of their studies indicated a reactivity order 

of k„, > k„„ > k for the rate of reaction between organic halide 
R1 RBr RCl 

and pentacyanocobaltate(1 I). In addit ion, i t  was proposed that the 

mechanism of this reaction fol lows a two step free radical process. 

The init ial and rate-determining step is the abstraction of halogen 

atom from the organic halide by pentacyanocobaltate(I I) to yield an 

organic radical and halopentacyanocobaltate(! I  I). The second faster 

step is the coupling reaction of two radicals, the organic radical 

generated in the f irst step and a second pentacyanocobaltate(I I  ) 
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complex, considered as an " inorganic" radical in i ts being a seventeen-

electron system and hence having an unpaired electron. Equations 3 and 

4 outl ine the mechanism: 

Co(CN)^"^ + RX XCo(CN)g"3 + R- (3) 

R. + Co(CN)g"3 ^ RCO(CN)^"^ .  (4) 

The kinetic studies indicated that the rate of reaction between the 

cobalt (II) complex and organic halide was f irst order in each, con

sistent with the proposal that halogen atom abstraction is the rate 

l imit ing step. This led to the rate law given in equation 5. The 

factor of two in the rate law arises from the stoichiometry of the net 

-d[Co(CN)c"3] _ 
gp-2 = 2k[Co(CN)g ^][RX] (5) 

reaction--two pentacyanocobaltates ( 1 I )  for every one organic halide. 

The interpretation presented by Halpern et al. for this reaction is 

9 10 
consistent with the one put forth by Kwiatek and Seyler. '  

The cobaloxime(I I) has been shown to undergo reaction wtih several 

different organic halides in a fashion completely analogous to the 

pentacyanocobaltate(I I) reactions. The reaction of cobaloxime(I I) and 

benzyl halides in organic solvents such as benzene and acetone has 

been studied.The rate of reaction was again seen to fol low 

the order " ' 'phCHzCl subst'tut 'O" of electron 

withdrawing groups in the para posit ion resulted in reactivity enhance

ment. Modif ication of the pseudomacrocyclic l igand (replacement of 
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methyl groups by a cyclohexyl r ing for example) resulted in l i t t le or 

no change in reaction rate. The effect of the axial base l igand was 

also studied with an increase in reaction rate concurrent with an 

increase in the value of the pka for the axial base l igand, i .e., the 

if-methylpyridine (pka = 6.1) derivative reacts with benzyl bromide at 

a rate of 0.43 IM '  s '  while the pyridine (pka = 5.3) derivative reacts 

at a rate of 0.28 IM ^ s '  and the tr iphenylphosphine (pka = 2.7) 

-1 -I 
derivative at a rate of 0.042 M s 

In 1970, Schrauzer et al. '^ reported very briefly upon the forma

t ion of tr ihalomethylcobaloxime(|I I) when tetrahalogenomethanes are 

added to methylene chloride solutions of cobaloxime(l l). The rapid 

decomposit ion of the tr ihalomethy1cobaloximes(I I  I) by aqueous hydroxide 

is also reported. 

18 
Roussi and Widdowson developed the halogen atom abstraction 

oxidative-addit ion reaction cobaloxime(I I) undergoes into a complete 

method of synthesis for organocobaloximes(I I I). Reaction of organic 

halides with cobaloxime(l l) in benzene in the presence of zinc metal 

gives superior yields of organocobaloxime(I I  I) to the Schrauzer^ method 

of alkylation of cobaloxime(l). The zinc metal is present to reduce 

the halocobaloxime(11 I) back to cobaloxime(l l) and leads to complete 

conversion (>90% in many instances) of cobaloxime(|I) to organo-

cobaloxime(I I I). The disadvantage to this synthesis as to the Schrauzer 

cobaloxime(I) method is that not al l  organic halides are applicable but 

rather only activated ones such as a-halogeno esters, a-halogeno 

ni tr i  les, a-halogeno nitro compounds, and phenacyl halides. Isopropyl 
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iodide gave trace organocobaloxime(1 I  I) product over a period of three 

days at elevated temperature (60°C). Methyl iodide, though, gave an 

excellent yield of 95% over a period of one day at 40°C. 

19 
Recently, Plnault and Crumb!iss ^ have demonstrated that cobalox-

ime(l i) init iates coupling of a,a,oi-tr ihalomethylbenzenes. The process 

is proposed to fol low the two step free radical halogen atom abstraction 

mechanism outl ined earl ier. The a,a-dihalobenzyl cobaloxime(l11) 

formed in the second step of "radical" coupling is too unstable to be 

isolated and quickly undergoes decomposit ion to give organic products 

and inorganic cobaloxime ( 1 I  I). When the cx,a-dihalomethylbenzene was 

employed in place of the a,a,a-tr ihalomethylbenzene, halocobaloxime(11 I) 

and a-halobenzylcobaloxime(I I  I) were isolated in moderately high 

yield. 

As mentioned earl ier, the cobaloximes and their chemistry are con

sidered as models for cobalamin chemistry. I t  is not surprising then 

that (cobalt in the +2 oxidation state) also undergoes halogen 

atom abstraction oxidative-addit ion with organic halides. Halpern and 

20 
Blaser examined a wide range of organic halides. In methanol solu

t ion, the kinetics fol low the rate law in equation 6: 

-d[B ] 
= 2k [B,2^][RX] .  (6) 

This is identical to the cobaloxime(11) and other cobalt(I I) contain

ing complexes. The same mechanism is postulated for B^g^ as is for the 

cobaloxime(I I) (equations 7, 8, 9): 
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B;2r + RX -> XB,2 + R' (7) 

R- + B,2r R B,2 (8) 

XB,2 + CHgOH -> B,2r + X" .  (9) 

The same reactivity patterns for the inorganic cobalt  ( l i )  complexes 

are noted for ^^2r'  ' •®*'  the fol lowing sequence indicates reactivity 

towards alkyi ha, Ides, ,  kp^^wx < KR^CCHj)/ """ 

The rates of reaction of are approximately one 

order of magnitude slower than the cobaloxime(11) for reaction with 

the same organic halide. 

21 
Marzil l i  etal .  has also demonstrated that Schiff 's base com

plexes of cobalt( l i ) ,  in particular the saloph derivative, react in 

an entirely analogous fashion to al l  the other cobalt( l i )  containing 

complexes discussed here. P-cyanobenzy1 halides afforded the p-cyano-

benzylCo(saloph) complexes in methylene chloride. 

As mentioned earl ier,  transit ion metal complexes containing a metal 

other than cobalt  also undergo the halogen atom abstraction. Rhodi-

um(ll)  complexes were shown by Espenson and Tinner^^ to abstract halogen 

atom from organic halides. The complex studied was the rhodium analog 

of cobaloxime(I  I ) ,  the rhodoxime(I  I ) .  Because of the rhodoxime(I  I )  

tendency to form a dimer,  the monomeric species was generated by f lash 

photolysis of the dimer or of an alky1rhodoxime(I  M ) ,  such as the 

isopropyl derivative. When done in the presence of organic halide, the 

rate of halogen atom abstraction can be obtained. Organic halides such 
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as CHBr^, CCl^, PhCHgBr, CHgBrg, and CHCl^ were examined. 

Complexes of chromium(ll) have been extensively studied with 

respect to atom transfer from organic halîdes to chromium(I |).  

The earl iest studied chromium(||) complex was the simplest one 

possible, the hexaquochromium(11) cation in aqueous perchloric acid. 

2*2 
In 1957. Anet and LeBlanc reported the formation of yellow solution 

when benzyl halide was added to a solution of chromous perchlorate in 

perchloric acid. Products of this reaction were identif ied as the 

halochromium ( 111) cation and the benzylchromium(liI) cation. 

Z k  
A study by Kochi and Davis in 1964 proposed that the formation 

of benzy1chromium(111) occurred via the two step free radical mechanism 

given for the cobalt(| |) complex reactions. Attempts were made at 

trapping the benzyl radical intermediate but proved inconclusive. 

Acrylonitr i  le and butadiene were employed as traps for the radical but 

i t  was found that benzylchromium(I I !) also reacts with these unsaturated 

compounds. The synthesis of several r ing-substituted benzy1chromium(|i |) 

cations was presented, again prepared by addit ion of the corresponding 

benzyl halide to chromous ion in aqueous perchloric acid. 

The pentaquopyridinomethyIchromium(111) ion preparation was de

scribed by Coombes et al.^^ Solutions of chromous sulphate reacted with 

2-, 3", or 4-bromomethyl pyridlnlum bromide to give the organochromi-

2b 
um(ll l) cation. Dodd and Johnson in 1968 prepared the mono- and 

dihalogenomethylchromium(lI 1) cations from the corresponding methylene 

dihalides or halogenoforms. For example, bromoform gave the dibromo-

methylchromium(llI) cation. Again, the two step free radical process 
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is credited as the mechanism of formation. 

Several other organochromium(fM) cation!c complexes have been 

prepared by halogen atom abstraction, including those derived from the 

27 28 29 
halogenoacetic acids and carbon tetrachloride. Pohl and Espenson 

prepared a family of difunctional complexes of bis(benzylchromium) 

ca t i ons  by  reac t i on  o f  ch romous  i on  w i th  o rgan ic  ha l i des  such  as  a , a ' -

dibromo-m-xylene and a,a ' -dibromo-p-xylene. Marty and Espenson^^ pre

pared the 3,3'"Oxybis(chromiomethyl)benzene cation, (CrCH2C^H^)20*^, 

by reaction with bis[m-(bromomethyl)-phenyl] ether. 

The reduction of alkyl halides to alkanes by chromous ion in 

solutions containing ethylenediamine or other g-amines has been 

studied.The presence of the 6-amine enhances the reducing 

abil i ty/abstracting power of the chromium(lI) ion. The reactive 

species is believed to be the mono(g-amine)chromium(11) complex and 

reacts with organic halides to produce the halo complex and the organo-

metall ic complex. The organometall ic complexes are hydrolytically un

stable and decompose rapidly. Spectral evidence supports the claim of 

alkyl (ethylenediamine)chromium(II1) intermediates. The enhancement 

of reducing power by chelation of the chromium(I I) ion by g-amines is 

acknowledged by reduction of n-butyl bromide to n-butane, a reduction 

not observed when only the hexaaquochromium (I I) ion is used. 

Finally, macrocyclic complexes of chromium (I I) have been shown 

to be powerful reductants/halogen atom abstractors towards organic 

halides. Samuels and Espenson^^'^^ studied the reaction of (1,4,8,12-

tetraazacyclopentadecane)chromium(11) with several alkyl halides. 
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The mechanism of reaction is the two step process already given numer

ous t imes. A competit ion study was conducted to determine the rate of 

the second step, that of radical coupling. 6-bromo-l-hexene was 

reacted with the macrocyclic chromium(li) complex. The result ing 

organic radical can either couple with another chromium(ll) complex 

or may undergo a rearrangement to cyclopentyl methyl radical^^ before 

coupling with a second metal complex. The ratio of products lead to a 

7 "*1 ~ 1 9 0 
value of (0.9*0.2)xl0 M s for this coupling rate. A similar study 

on the ethylene diamine chromium(il) complexes leads to a value of 

4x10^ '  for the w-hexanyl radical and the 3-amine complex of 

chromium(I I). This value is consistent with the inabil i ty of the 

B-amine complex of chromium(li) to capture eyelopropylmethyl radical 

before i t  isomerizes to y-butenyl radical, a rate estimated at greater 

than 10+* 

The reactions discussed above fol low the same mechanism, a two step 

free radical process shown in equations 10 and 11, and a rate law given 

in equation 12. 

ML^ + RX - l  XML^ + R- ( lO) 

ML + R" i  RML (11) 
n n 

2ML„ + RX = XML + RML ( l ia) 
n n n 

•d[ML ] 
= 2k, [ML„][RX] (12) 

d t  I n "  

The reaction to be investigated in the studies here is the 
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cobaloxiit ie(l I) reaction with polyhalogenomethanes. This reaction, as 

mentioned in the opening paragraph, is a key step in the work of Johnson 

and coworkers, i t  is believed to fol low al l  the precedents put forth 

by the previously studied halogen atom abstraction reactions. I t  is 

of interest though because i t  is one of the unverif ied steps in the 

chain mechanism of Johnson et al. 's work. 

Johnson and coworkers have reported, in a series of papers,'  

several different reactions involving homolytic displacements at carbon 

centers. Among these reactions are studies involving SO^ insertions 

38 
into metal-carbon sigma bonds, regiospecif ic syntheses of alkyl 

2 
sulphenes from allylcobaloxime(lI I) and organosulphenyl chlorides, 

and two studies of interest here, the reaction of alkyl- and al lenyl-

cobaloxime with polyhalogenomethanes' and the syntheses of tr ichloro-

ethylbenzenes from benzylcobaloxime(l l t),^^ 

In the f irst study of interest, the al lyl- and al lenylcobalox-

ime(l l l) systems, reaction of these complexes with bromotrichloromethane 

yielded 4,4,4-tr ichlorobutene and 4,4,4-tr ichlorobutyne, respectively, 

as well as bromocobaloximeClI I).  The second study with benzylcobalox-

ime(l l l) produced tr ichloroethylbenzene where bromotrichloromethane was 

added to i t  as well as bromocobaloximeClM) once again. 

The mechanism for the benzylcobaloxime(.l 1 I)  reaction is outl ined 

below in equations I3-I8. 

PhCH2Co(dmgH)2L -> PhCH^ + CofdmgHjgL 

CotdmgHlgL + BrCCl^ BrCofdmgHjgL + CCl^ 

(13) 

(14) 
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-CCIg + PhCHgCofdmgHjgL CClgCHgPh + CofdmgHjgL (15) 

BrCClg + PhCHg" ^ PhCHgBr + CCl^ (16) 

"CClg + CofdmgHigL -»• CCl^ CofdmgHjgL (I7) 

2 CCI2 ^ CgClg .  (18) 

The reaction of benzylcobaloxime (I I I  ) and bromotrichloromethane 

occurs at an elevated temperature (50°C-90°C in CHCl^) and the init ial 

homolysis of the organocobaloxime ( 1 1! ) in equation 13 is completely 

reasonable. The metal-carbon bond in organocobaloximes ( i  I  I  ) are not 

thermodynamically robust and thermolysis readily leads to homolytic 

cleavage. Traces of the cobaloxime (I I  ) may also arise either as an 

impurity in the organocobaloxime (I I  I) species or from homolysis of 

the Co-C bond due to photolysis. 

The next step, that of halogen atom abstraction by the cobalox-

ime(l l) formed upon homolysis, is the reaction undertaken as the study in 

this dissertation. Based upon the precedents cited in the f irst half 

of this section, the reaction is once again reasonable and expected 

under the given condit ions (high concentration of bromotrichloromethane 

and low concentration of cobaloxime (I I))• 

Equation 15 accounts for the production of the tr ichloroethylbenzene. 

This reaction is attack at the a-carbon of the benzyl l igand by the 

tr ichloromethy1 radical. This requires that the cobaloxime (I I) 

moiety to be an excellent leaving group in an S|^2 fashion. Dodd et 

k 2  
al. have shown that alkyl transfer from organocobaloxime (I I  I) to 
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cobaloxime(I I) is a very facile and rapid process in many instances. 

This is indicative of the abil i ty of cobaloxime(l l) to behave as an 

excellent leaving group in a displacement reaction. 

Equations 14 and 15 then constitute a chain mechanism involving 

cobaloxime(1 I) as a chain carrying species. Equation 16 is included 

to account for the benzyl bromide formed in the reaction. This yield 

of benzyl bromide and subsequently of tr ichloroethylbenzene is dependent 

upon the nature of the axial l igand. Equations 17 and 18 are possible 

termination steps for this chain sequence. Both are viewed as radical 

coupling reactions. Equation 17, the formation of tr ichloromethyl-

cobaloxime (I I I) could be more than simply a termination step. 

Trichloromethylcobaloxime(1 I I) can be viewed as a storage well for the 

tr ichloromethyl radical and therefore equation 17 can possibly be 

reversible. In view of the elevated temperatures this reaction is run 

under, homolysis of the cobalt-carbon bond in tr ichloromethylcobalox-

ime(l l l) is reasonable and expected. 

The reaction of the al lyl- and al lenylcobaloxime(l l I) fol low a 

similar mechanism. Equations 19-25 give the al lyl cobaloxime ( I  I  '  ) 

mechan i  sm: 

^^Co(dmgH)2L -> \̂/ + CofdmgHjgL (19) 

Co(dmgH)2L + BrCCl^ BrCofdmgHjgL + CCl^ 

CClg + ^^\^o(dmgH)2L $ [CCl^/\.^Co (dmghOgL] 

(20) 

( 2 1 )  

CCl^'^N^ + Cc^dmgkOgL (22)  
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CCI2 + CofdmgHjgL CCIgCofdmgHjgL (23) 

+ BrCCIg + CCI^ (24) 

2 CCI 2 ^ CgCI^ .  (25) 

The same interpretation as for the benzylcobaloxime(111) reaction may 

be presented here also. Photolysis or thermolysis of al lylcobaloxime(lI I) 

init iates the chain in equation 19. Halogen atom abstraction occurs 

fol lowed by attack of the tr ichloromethyl radical on the terminal 

carbon of the allylcobaloxime(lI I) rather than a-attack as in the 

benzy1cobaloxime(11 I) reactions. Loss of cobaloxime(l l) in equation 

22 sets up the chain mechanism. Equations 23 and 25 are again probable 

termination steps and equation 24 accounts for the small amount of al lyl 

bromide produced. 

A similar mechanism can be presented for the allenylcoba1oxime(l1 I) 

reactions. 

The reaction of cobaIoxime(I I) and polyhalogenomethanes (bromo-

trichloromethane is not the only organic halide that reacts under these 

condit ions-'CHBr^, CCI^CN, CCl^^ CBr^, CHBr^CN have al l  been demonstrated 

to react analogously to BrCCl^ with benzyl-, al lyl-, andallenylcobalox-

ime(l l l)) then is a very important step in the Johnson scheme. Although 

adequate studies have been done to support the abstraction of halogen 

atom from polyhalogenomethanes by cobaloxlme(l l  ) ,  no actual mechanistic 

studies have been done. 

I t  is with this reasoning the study of cobaloxime(l l) and various 

polyhalogenomethanes (CCl^, BrCClg, CBr^, CHBr^) is performed. The 
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rate of reaction as well as thermodynamic data are obtained for these 

reactions, al lowing correlations between rate, activation parameters, 

and thermodynamic quantit ies such as bond dissociation energies. 

In addit ion, the radical nature of the mechanism is probed in a 

different manner than previously attempted. Suitable scavenging agents 

are employed to kinetically alter the mechanism and therefore rate 

of reaction. Computer simulation of the experimental data allows 

speculation about the rate of radical coupling between cobaloxime(l l) 

and the radical intermediate. 
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RESULTS AND DISCUSSION 

Solvents 

The kinetics and mechanism of the reactions between cobaloxime(l l) 

and several polyhalomethanes were studied in acetone and benzene as 

solvents. The majority of the experiments were performed in the latter 

solvent as i t  proved the more easily handled. Several reasons exist 

for the selection of acetone and benzene over several other solvents. 

They provide very stable solutions of cobaloxime(II) as very 

l i t t le decomposit ion is noted over a period of several hours. Alcoholic 

solvents such as methanol or ethanol provided very unstable solutions 

in that most of the cobaloxime (I I) was lost in less than an hour's 

t ime. This has also been observed by Schneider et al. in their 

cobaloxime (I I) studies.The use of methylene chloride and chloroform 

was also rejected as they do react very slowly with cobaloxime(I I) in 

the same manner as higher polyhalomethanes (see below). 

Stoichiometry and the Products of Reaction 

A very l imited number of stoichiometric studies was done as previ

ous work^^'^^'^^'^3 has established the overall stoichiometry of the 

cobaloxime(I I)/alkyl halide reaction as 2:1. One determination was con

ducted in each solvent. Spectrophotometric t i trations with BrCCI^ of 

CofdmgHOgpy in benzene (Figure III-3A) gave an average ratio of 

2.05*0.13 while Cc^dmgHOgPPhg in acetone gave an average ratio of 

2.16*0.06. Equation 26 presents the stoichiometry of reaction. 

2 Co(dmgH)2L + RX = XCo(dmgH)-jL + RCo(dmgH),L (26) 
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[Br C Clg]/|Co(dmgH)2 py] 

Figure I I  1-3. I l lustrating the results of spectrophotometric t i trations 
of Co(dmgH)2Py by BrCCIg: (a) No added radical 
scavenger; (b) in the presence of excess 4-HTMPO 
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Table I  11-1 contains the pertinent data. 

Table I  I  1-1. Stoichiometry of the cobaloxime(l l)-polyhalogenomethane 
reaction^»" 

Solvent 
Axial 

base 
Polyhalogeno-

methane 
Cobaloxime (II): Po1yha1ogenomethane 

(CH^igCO PPhg BrCClJ 2.13, 2.27, 2.08: 1 Avg :  2.16*.06:1 

C6"6 CgHgN BrCClj 

CM VÛ O
 

CM 

3.18: 1 Avg :  2.05±.13:1 

C6"6 CjHjN BrCClg .98, 1.00, 1.00: 1 Avg :  .993^.012:1^ 

*25.0±.1°C. 

^Determined by spectrophotometric t i tration at A.460 nm (PPh,) and 
XklO nm (CgHgN). ^ 

^In presence of excess radical scavening agent 4-HTMPO. 

The products of reaction were not readily isolated in pure form. 

The standard chromatographic procedures that have proven highly success

ful for other mixtures of halocobaloxime(I I  I) and a1kylcobaloxime(II I) 

were unsuccessful with the mixture of halocobaloxime(l l l) and tr i

bal omethyl cobaloxime ( I I  I  ) .  This is not too surprising in the l ight 

that both complexes are very similar i f  one views the tr ihalomethyl 

group as one "large halide" l igand and that si l ica gel separates on the 

basis of polarity and H-bonding. 

Attempts were made to isolate the tr ihalomethylcobaloximes(I I  I) by 

conversion of the halocobaloxime(I M) to other species. Ag^ salts 

were added to the product mixture with the hope of converting the 
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halocobaloxime(I 11) to a (solvato)cobaloxime(II I) that carries a +1 

charge. These cat ionic cobaloximes(I I I) do not readily elute down 

chromatographic columns and would provide very facile separation. Un

fortunately, the Ag^ also seems to attack the tr ihalomethylcobalox-

imes(l l l) as they are not recovered as evidenced by 'H NMR (see below). 

18 
The methodology of Roussi and Widdowson was applied in that Zn 

dust was added to reduce the halocobaloxime(I I  I) to cobaloxime(l l) with

out affecting the organocobaloxime ( I I  I). For reasons unknown, very 

l i t t le halocobaloxime(I I  I) was removed. The use of elevated tempera

tures (40-50°C) to facil i tate the process resulted in recovery of only 

inorganic cobaloximes(I I  I), due most l ikely to the homolysis of the 

o rganocoba1 ox i  mes(III). 

A third attempt at separation of these products was to convert the 

axial base of the alkylcobaloxime(I I  I) to a different one from that on 

the halocobaloxime(l l l). Although in the substitutionally inert oxida

t ion state of +3, the Co center experiences a very large translabi1iza-

t ion effect due to the alkyl l igand in organocobaloximes(l l l).^^ 

i t  was reasoned then that addit ion of pyridine to a mixture of the 

tr iphenylphosphine adducts of bromocobaloxime(I I  I) and tr ichloro-

methy1cobaloxime(I I  I) would result in a mixture of bromo(triphenyl-

phosphine)cobaloxime(l11) and tr ichloromethyl(pyridine)cobalox-

ime(l l i). This mixture should then be readily separable on si l ica 

gel. Unfortunately, in solvents such as benzene and acetone, the 

halocobaloxime(l l l) also exchanges axial bases rapidly and quanti

tatively and the net result was substitution of axial bases in both 
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complexes. 

After these fai lures at separation and isolation, the products were 

identif ied on the basis of their 'H NMR and known chemical reactions. 

The 'H NMR spectrum of a product mixture from the reaction of 

cobaloxime(11) and excess polyhalomethane in benzene or acetone showed 

two singlets in the region where the methyl groups of the dimethyl-

glyoximato l igands resonate. They occurred at 62.25 and 62.35 (rela

t ive to TMS, 60.0) and were roughly equal in peak height and area. 

The former is assigned to the halocoba1oxime(l l  I  ) based on a compari

son with an authentic sample. The latter is then assigned to the 

alkylcobaloxime(111). This is supported by the observation that addi

t ion of aqueous alkali resulted in the loss of the 62.35 signal and 

enhancement in the 62.25 signal. This is consistent with the reported 

decomposit ion of tr ihalomethylcoba1oximes(l11) by aqueous base.'^ The 

equality of the size of the peaks is a further confirmation of the 

stoichiometry of equation 26. 

The reactions of bromoform with cobaloxime(l l) was free of the 

complications experienced with the tetrahalomethanes in that product 

mixtures were easily separated by si l ica gel chromatography and isolated 

in pure form. For details, see the Experimental section. 

Ki net Ics 

Pseudo-first-order rate constants were determined in the presence 

of a large excess of polyhalomethane. They represent the quantity de

f ined in equation 27-
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kobsd = -d In [CofdmgHjgLj/dt .  (27) 

Figure 11 1-4 represents several typical sets of data. All plots 

of kobsd vs. [RX] are l inear and pass through the origin. Assuming 

that the rate determining step is halogen atom abstraction, the net 

rate of reaction is given in equation 28a: 

-d[Co (dmgH),L] -2d[RX] 
—— = 2k^ [Co(dmgH)2L] [RX] .  (28a) 

The values of kj are calculated as kj = kobsd/2[RX]. The data are sum

marized in Table I  11-2 for the polyhalomethanes CCl^, BrCCl^, CBr^, and 

CHBr^ in acetone and benzene. As is evident, the reactions were also 

studied as a function of temperature. Table I  11-3 gives the activation 

parameters for these reactions. 

Reaction in the Presence of Radical Scavenging Agents 

The effect of the addit ion of possible scavenging agents to the 

system was investigated by employing a diverse group of reagents. 

+2 
Inorganic scavenging agents such as Cu were not successful because 

of their l imited solubil i t ies in acetone and benzene, possible redox 

reactions with cobaloxime(l l) and the possibil i ty of hydrolysis reac

t ions involving the waters they introduce into the system and consequent

ly attack on the tr ihalomethy1cobaloxime(Ii I  ). 

Olefinic complexes such as 1-octene, acrylonitr i  le, and 1,3-cyclo-

hexadiene were also unsuccessful. The presence of these compounds, even 

in very high excess over c o b a l o x i m e ( l ' ) ,  caused no discernible effects 

in the kinetics of the reaction. For example, a 135-fold excess of 
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Fiqure 111-4. Plots of the pseudo-first-order rate constants at 25.0*C vs. [CCItJ for i ts reac 
t ion with Co(dmgH)^_ in acetone (A, B, E) and benzene (C, D) for L = 4-picoline 
(A, C), pyridine (B, D), and tr i  phenylphosphine (E) 
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Table 111-2. Values of the second-order rate constants ki for the 
reaction of CofdmgHjgL with polyhalomethanes® 

RX 
k,/M" (T/°C) 

RX 
CofdmgHjgPy CotdmgHjgPPhg 

RX 

acetone benzene acetone benzene 

CCI. 0.199 (10.88) 0.161 (15.74) 0.0835 (19.67) 
4 1.90 (25.00) 0.558 (25.01) 0.304 (25.01) 0.106 (24.91) 

1.18 (34.77) 0.571 (34.61) 0.212 (34.44), 
[3.53 (25.00)]b [1.06 (25.00)] 

CHBr, 0.274 (14.49) J 1.12 (25.00) 0.515 (25.00) 0.231 (25.00) 0.0755 (25.00) 
0.814 (34.78) 

BrCCl] 614 (14.89) 
938 (25.35) 

1280 (34.56) 
CBr. 1900 (5.91) 

4 2580 (14.21) 
4580 (25.02) 

^Details of the kinetic results are given elsewhere. 

= 4-methy1pyridine. 

Table I I I-). Activation parameters for the reaction of CotdmgHÏgL 
with polyhalomethanes 

RX L Sol vent 
AH*/kca1 

mol-1 
AS*/cal 
mol-l K-1 

CCli, PPhg Acetone 11.26 ±0.10 -23.13±0.33 

CCI4 PPhj Benzene 10.42 ± 0.90 -27.6 ±3.0 

CCI4 C5H5N Benzene 12.01 ± 0.25 -19.33 ±0.85 

CHBrj C5H5N Benzene 8.87 ±0.49 -30.16± 1.63 

BrCCl] C5H5N Benzene 5.94 ±0.23 -25.06± 0.76 

CBr/j C5H5N Benzene 6.97 ±0.88 -18.5 ±3.0 
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1-octene over CofdmgHjgPPhg in benzene gave the same rate of reaction 

with CCl^ as i f  no 1-octene were added. 

The class of organic compounds known as the nitrones was also tr ied. 

These complexes scavenge radical intermediates by forming stable 

nitroxide species with them. N-t-butyl-a-phenyl-nitrone was the 

particular reagent used. As with the olefins, the presence of this 

material made no difference upon the rate of reaction. I t  is not 

certain whether or not the nitrone Is trapping the radical species as 

the reverse of the trapping reaction is very facile and enhanced by 

visible l ight irradiation, i t  could also be that the nitrones are too 

45 
slowly reacting. 

The class of organic compounds known as the nitroxides proved most 

successful in trapping the radical intermediate. Two particular 

nitroxides were used. The f irst was the di-t-butyl nitroxide. 

Blank experiments indicated that di-t-butyl nitroxide was unreac-

t ive towards the polyhalomethane as well as the cobaloxime(I ') reagent. 

The addit ion of di-t-butyl nitroxide to a solution of cobaloxime(l l) 

and excess carbon tetrachloride produced a kinetic trace decidedly dif

ferent from simple f irst order behavior. I t  is obvious that the 

nitroxide is altering the course of the reaction in that i t  is inter

cepting some of the radical Intermediate before cobaloxlme(l i) reacts 

with i t .  A large enough excess of nitroxide over cobaloxime(||) would 

be expected to return to f irst order behavior as the radical intermedi

ate would have only one option in i ts reaction. A 300-fold excess 

fai led to achieve this. 
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More successful was the use of the compound 4-hydroxy-2,2,6,6-

tetramethylpiperidinooxy (4-HTMPO) in the system. Blank experiments 

also proved this compound unreactive towards the other start ing 

materials in the system. 

Figure III-3B shows the effect an excess of 4-HTMPO has upon the 

stoichiometry of the cobaloxime(l1)/polyhalomethane reaction. As seen 

here and in Table I  I 1-1, the stoichiometry changed from 2:1 cobalox-

ime(l l)/RX to 1:1 cobaloxime(I I)/RX. The new stoichiometric reaction is 

given in equation 28b: 

CofdmgHjgL + R'X + RgNO- = X CofdmgHjgL + RgNOR' .  (28b) 

The kinetics of the reaction also change markedly by the presence 

of 4-HTMPO. Three cases must be examined: (1) no 4-HTMPO present; 

(2) large excess of 4-HTMPO present; and (3) an intermediate concentra

t ion of 4-HTMPO where both cobaloxime(I I) and 4-HTMPO compete for the 

radical intermediate. The f irst case has already been discussed above. 

The second case where 4-HTMPO is suff iciently high in excess of 

cobaloxime ((I) to completely scavenge the radical intermediate is a 

relatively straightforward situation. Very clean f irst order decay was 

again noted just as in the case where no scavenging agent was present. 

The major difference is that the rate in the scavenger present system 

is lower by a factor of 2.0 than in the system without. As an example, 

the reaction between CofdmgHjgPy and BrCCl^ in benzene has 

kobsd/EBrCClg] = (1.88+0.06)xlO^ M"^ S"^ at 25.35°C without 4-HTMPO and 

(9.13*0.09)xl0^ M"^ S" '  at 25.00°C with (5.6)xl0'^ M 4-HTMPO present. 
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The ratio of these two rate constants is 2.05-0.09. This is entirely 

consistent with what has gone on in the scavenger absent system. In 

the system with no 4-HTMPO, is defined as kobsd/2[BrCCland has 

a value of (9.38-0.3)xlO^ ^ ^ s \  These two values are the same within 

acceptable l imits. Therefore, when a large excess of 4-HTMPO is 

present, the rate law is as given in equation 29: 

-d[Co(dmgH)_L] -d[RX] 
—= k][Co(dmgH)2L][RX] .  (29) 

The situation where effective competit ion between cobaloxime(' ') 

and 4-HTMPO is occurring is a much more complex one than the two 

extremes above. The overall mechanism of concern is given in equations 

30-32. For simplicity and consistency, the rate constants wil l  be 

Co(dmgH) 
1 

,L + R'X X Co(dmgH)-L + R'- (30) 

k_ 
R'- + Co(dmgH)2L ->• R' Co(dmgH)2L (31) 

S 
R'* + RgNO- RgNOR' (32) 

assigned as k^ for equation 30, k^ for 31. and k^ for 32. 

When the steady-state approximation is made for [R*], the rate of 

reaction by equations 30-32 is given in equations 33 and 34: 

-d[Co(dmgH).L] ,  
2^ ~ k^ ( j^) [Co(dmgH)2L] [RX] .  (33) 

a = k2[4-HTMP0]/k2[Co(dmgH)2L] .  (34) 
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The two correct l imit ing forms, equations 28 and 23 ,  are derived 

from equations 33 and 34 at the extreme [4-HTMPO] concentrations of 

zero {( j^) = 2} and infinity = U. In the intermediate 

region, a more complicated analysis is required. 

Define the quantity m as in equation 35 from kobsd and the 

(35) 

independently known value of k^. The value of m then should be the 

same for different compounds that lead to the same free radical (e.g. 

BrCClg and CCl^) at a given value of a as k^, and k^ are independent 

of the variation of X. 

Figure I  I 1-5 depicts the variation of m with the init ial concentra-

t ion ratio of [4-HTMP0]/[Co(dmgH)2L]. The result that data from con

ventional methods involving CCl^ and f lash photolytic methods involving 

BrCClj l ie in the same curve establishes the expected congruence for 

the case R* = CCl^*• 

Before leaving this section, a comment or two is necessary. Unlike 

the dl-t-butyl nitroxide experiments, no curvature or at best very 

minor bowing was noted in the In(D^-D^) vs. t ime plots used to determine 

the pseudo f irst order rate constants kobsd. This is most unusual and 

unexpected given the complex nature of equation 33 which defines the 

rate law in the intermediate 4-HTMPO concentrations. Inspection of equa

t ion 33 should lead to behavior far from f irst order, but this is the 

exact opposite of the observed behavior. This point is rectif ied in the 

next section on the computer simulations of the system. 
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Figure I  I  1-5. Competit ive reactivity of 4-HTMPO and Co(dmgH)2Py toward •CCI3, generated from 
BrCCI^ ( O )  and from CCI4 (•) as i l lustrated by the variation of m (equation 11) 
with the ratio of init ial concentrations. The solid l ine shows the same quantity 
using kinetic data simulated by forward integration techniques for the ratio 
kg/kg = 1.8 
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Mathematical Simulations 

The treatment given in the above section on the intermediate 

scavenging reactions of 4-HTMPO is imprecise on two counts. The f irst 

is that the values of a and m (equations 34 and 35) were assumed to be 

constant during the kinetic run. In actuality, both should vary during 

the kinetic run as the consumption of 4-HTMPO and CotdmgHygL occur at 

different rates. This is the oddity mentioned above concerning the un

expected pseudo-first-order behavior. The factor (2+a/l+a) in equation 

33 should be changing with t ime leading to nonpseudo-first-order 

kinetics. The second point is that the description of m as a function 

of the init ial concentration ratio [4-HTMP0]/[Co(dmgH)2L] can only be 

approximate since this ratio changes during the course of the kinetic 

run. 

To better understand these effects and their importance in the 

total analysis, the kinetic situation represented by equations 30-32 

was examined mathematically. The differential rate equations used in 

the analysis are given in equations 36-40. 

= k^[Co(l l)][R'X] + k2[Co(M)][R.'] (36) 

= k2[Co(l l)][R-'] (37) 

dtXCo(ll l)] ^ k.[Co(l l)][R'X] (38) 
at I  

k,[Co(l l)][R'X] - k2[Co(l i)][R-'] -  k^tRgNO-llR-'] (39) 

= k_[R,NO-][R-'] .  (40) 
dt 3 2 
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Numerical forward integration techniques were applied to the solu

t ion of the above equations. The fourth order Runge-Kutta method 

proved to be highly ineff icient in their solution. This was due to 

kg and being so much larger than k^ that minute t ime increments were 

necessary and consequently, the analyses required computer calculations 

that were too lengthy and costly. This type of situation is referred 

to as involving a "st i f f" set of differential equations and is a situa

t i o n  b e s t  s u i t e d  f o r  G e a r ' s  p r e d i c t o r - c o r r e c t o r  m e t h o d . T h e r e 

fore, this was the chosen method of analysis. 

Init ial values of al l  reactant concentrations were chosen for each 

calculation corresponding to the different experimental condit ions used. 

The rate constant k^ was held f ixed at i ts experimentally determined 

value of 0.558 ^  ̂  s '  for CCl^ in benzene at 25.0°C. The rate constants 

kg and k^ are unknown but are expected to be large and were appropri-

7 Q -1 -1 
ately set in the range 10-10 M s .  The actual values of kg and k^ 

are unimportant only relative to each other and need only be larger 

than k^. 

The computer program used generated a concentration vs. t ime pro

f i le at frequent t ime intervals for al l  species involved—reactants, 

products, and intermediates. A simulated absorbance vs. t ime curve was 

also produced by using the known molar absorptivit les of every species 

(at X420 nm, efCofdmgHigPy) = 3.55x10^ m"' cm"', e(4-HTMP0) = 9.4 M~' 

cm ' ,  EfClCofdmgHjgPy) = 6.82x10^ (4 '  cm \  and EfCClgCofdmgHjgPy) = 

7.89x10^ M" '  cm"V al l  other species have molar absorptivit ies of zero 

at this wavelength). 
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The results of these calculations are as fol lows. (1) Simulated 

absorbance vs. t ime traces are identical with the actual traces for at 

least the f irst three half- l ives. Beyond this point, differences set 

in due to a secondary reaction in the actual kinetic run not compensated 

for in the mathematical model. (2) The simulated concentration of the 

intermediate -CCl^ radical species remains at very low steady state 

concentration throughout, -10 of the [CofdmgHjgPylQ. (3) Without any 

4-HTMPO present or with a very large excess of i t  over Co(l i), precise 

pseudo-first-order data are generated. Consistent with the experimental 

f indings, values of kobsd/[CCl^] differ exactly by a factor of 2.00 at 

these extremes. (4) At intermediate concentrations of 4-HTMPO, the 

simulated data are not precisely pseudo-first-order in nature. The 

values of kobsd at a given [CCl^^] concentration decrease sl ightly 

throughout the run. The extent of this curvature is not very large in 

the pseudo-first-order plots and becomes l inear with a very small adjust

ment in the predicted D-infinity. This is why in the experimental data 

where competit ion of the radical intermediate exists, l inear plots are 

st i l l  realized due to a compensation in the D-infinity during analysis. 

(5) Each simulation, after adjustment of D-infinity to force a f irst-

order f i t ,  yields a value of kobsd and (by equation 35) a value of m. 

The variation of m with the init ial concentration ratio for the simulated 

data was compared to that found experimentally, as shown in Figure I  I  1-4. 

The best agreement occurred at the ratio of k^/kg = l .SiO.l. This agree

ment proved independent of the actual values of the rate constants k^ 
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and kg provided they were suff iciently large compared to k^(a factor of 

10^) and were in the ratio of 1.8. 



www.manaraa.com

134 

INTERPRETATION 

As indicated in the introduction to this part of the thesis, a 

great amount of study has gone on before to ful ly establish the general

i ty of the mechanism given in equations 10 and 11 in the case of other 

alkyl and aryl halides. The results found here are in complete agree

ment with these previous f indings. The stoichiometry and the products 

are in accord with equation 11a, and the rate law establishes the 

bimolecularity of the rate l imit ing step. 

An alternative mechanism to the one proposed in equations 30 and 31 

exists and should be considered. Rather than the abstraction of halogen 

atom with the formation of a carbon centered radical as the rate l imit

ing step, the transfer of the alkyl group to the cobaloxime(l l) with 

the formation of halogen atom could occur. This is highly unlikely in 

l ight of the results of the trapping experiments which include the change 

in stoichiometry and reaction rates. The only product observed when a 

large excess of 4-HTMPO was present was the halocoba1oxime(i11). I t  

would be most unexpected for the polyhalomethanes to react differently 

from other alkyl halides. Further support of the mechanism given in 

equations 30 and 31 is the minor decrease in rate concurrent with a 

change in solvent polarity in going from benzene to acetone. This is 

indicative of a nonionic transit ion state consistent with the rate 

l imit ing step of halogen atom abstraction. 

The rate of reaction between a given halide RX and the complex 

CofdmgHjgL is very dependent upon the nature of the axial base L. The 
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reaction rate order was found to be PPh^ < pyridine < 4-methylpyridine, 

also consistent with earl ier work.^^'*^ Ligand basicity increases in 

the same order, as measured by pKa values, which are 2.7, 53, and 6.1, 

k6 49 
respectively. '  This trend in reactivity is in ful l  agreement with 

a transit ion state for equation 30 in which electron transfer from 

Co(l l) is enhanced by electron donation from L onto the metal. The 

increases in rate with increasing l igand basicity are not great, with 

only one order of magnitude between the extreme members. This is very 

comparable to the analogous reactions involving the benzyl halides.'^^ 

Variation of the organic halide gives r ise to very pronounced 

differences in the rate constant (for equation 30) and the associated 

value of AH*. For proper comparison of these values, the rate constants 

must undergo a statist ical correction based upon the number of equiva

lent reactive C-X bonds. On such a standard, the reactivity order (and 

kj°^^ values for the reaction of Co(dmgH)2Py in benzene) is 001^,(0.14 

m"' s"1) < CHBr^ (0.17) « BrCCl^ (938) < CBr^ (1145). This is another 

14 16 22 32 33 
trend total ly in agreement with previous investigations. » » » » 

Carbon-bromine bond cleavage occurs more readily than carbon-chlorine 

bond cleavage in comparable compounds. The very large difference between 

bromoform and the two more reactive bromine containing polyhalomethanes 

is apparently due to the differences in the carbon-bromine bond 

strength. 

Analysis of variations such as these that arise in a homologous 

series can be sought through the bond dissociation enthalpy of the 

carbon-halogen bond. Values for the latter are well-established and 
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given in Table 11 1-4 along with the corresponding enthalpy of activa

t ion va 1ues. 

Table I I  1-4. Comparison between enthalpy of activation for the 
cobaloxime(l l)-polyhalogenomethane reaction and the 
bond dissociation energy of the C-X bond 

Reaction Solvent 
H~ B.D.E. 

(kcal/mole) (kcal/mole) 

CofdmgHjgPy + CCl^ 12.01 ± .25 70.4 ± 1^° 

CofdmgHjgPy + CHBr^ 8.87 ± .49 62^' 

CofdmgHjgPy + CBr^ C^Hg 6.97 ± .88 56.2 ± I.8^2 

CotdmgHjgpy + BrCCl^ 5-94 ± .23 55.7 ± 1^° 

In Figure 111-6 is a comparison of these two quantit ies. As is 

evident, a good l inear correlation exists. Caution must be used, how

ever, in analyses such as these. I f  the comparison is extended outside 

the homologous series to similarly reacting compounds, the correlation 

becomes lost. The value off the l ine in Figure I  11-6 is for PhCH^Br. 

The reason for this is the stabil i ty differences among the different 

carbon-centered free radicals being formed at the transit ion state. 

These now play a deciding role in influencing the activation and bond 

enthalpies. 
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Figure 11 1-6. The enthalpy of activation associated with halogen atom 
abstraction reaction of equation 1 is l inearly corre
lated with the bond dissociation enthalpy for the given 
polyhalomethane (o). The correlation does not extend 
to benzyl bromide, however (•) 
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The entropy of activation values, AS", are very negative, -19 

-1 -1 
to -30 cal mol k (see Table i l  1-3). Again, in total agreement 

with earl ier studies, such as the analogous reactions of benzyl 

bromide with CofdmgHjgPPhg (-32 cal mol '  k ' )  and CofdmgHjgPy (-29 

cal mol '  k ').^^ Solvation effects cannot account for these values 

since the reaction is nonionic in character and the results were ob

tained in the relatively unpolar solvents acetone and benzene. In

stead, these values imply a very highly ordered transit ion state. 

Within the solvent cage, many possible coll ision complexes wil l  form 

during the encounter of Cc^dmgHjgL and RX. Of these coll isions, a 

very small proportion would be l ikely to occur with an orientation 

suitable for halogen atom transfer. Addit ionally, i t  is known that 

the participants in a gas-phase association reaction wil l  experience 

a large loss of translational entropy in their combination. 

The presence of 4-HTMPO and i ts effect upon the reaction kinetics 

is successfully and accurately modeled as fol lowing equations 30-32. 

An estimate of k^/kg was found to be 1.8 from the simulations. The 

absolute values of either of these two radical coupling reactions are not 

known, but suff icient data exist to make reasonable estimates. The rate 

8  - 1  - 1  
constant k^ is estimated at 1.5x10 ^ s based on the value for the 

coupling of C-C^H^ and other al iphatic radicals to 4-HTMPO.This 

leads to an estimate of k^ - 8.0x10^ ^  ̂  s \  This latter value can be 

compared with the rate constants for the capture of other al iphatic 

radicals by other Co(l l) macrocyclic complexes leading to the formation 
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of Co-C bonds R* + Co(Me^[l4]ane-^,l1-diene (l-7)xlO^ 

s"^ (R = 8x10^ (R = CHgCHO),^^ yxlO? (R = CH^OH) 

3x10? (R = CHfCHgiOH),^^ 4x10? (R = CHfCHgNHg+lOH),^* and -1x10^ (R = 

CHOHCHgOH).^^ I t  is reasonable then to state that these estimates of 

kg = 8.0x10^ î i  '  ^ '  and k^ = 1.5x10^ j l  '  ̂  '  are roughly correct. 

The f inal comments wil l  concern the lack of effect upon the reac

t ion rates of 1-octene. The inabil i ty of a 135-fold excess of 1-octene 

over cobaloxime(I I) to alter the kinetics of the reaction is a reflec

t ion of Its inabil i ty to successfully compete with cobaloxime(l l) for 

the tr ihalomethyl radical intermediate. Taking into consideration the 

4 - 1 - 1  
level of experimental uncertainty, an upper l imit of 6x10 ^ s is 

placed on the second order rate constant for the addit ion of -CCl^ to 

1-octene. The actual value for this rate constant is presently not 

known, but values are known for the similar reaction of methyl radical 

addit ion to olefins. These values l ie in the range of (5-30)xlO^ IM ^ 

s This upper l imit is then reasonable and simply reinforces the 

argument that 1-octene is too low in reactivity towards "CClg to be an 

effective scavenger. 
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EXPERIMENTAL 

Materials 

Solvents 

For most kinetic experiments, reagent grade acetone (Fischer 

Scientif ic) and benzene (Fischer Scientif ic) were employed. Spectro-

photometric grade acetone (Aldrich) was used for some measurements. 

Acetone and benzene purif ied in the manners described below were also 

used for some reactions. Identical results were achieved regardless 

of the history and nature of the solvent. 

Acetone was purif ied by saturating 1 l i ter of the neat l iquid with 

Nal at room temperature. The solution was then decanted and cooled to 

-10°C in an acetone/dry ice slurry. Crystals of the Nal complex pre

cipitated and were collected on a glass fr i t  by suction f i l tration. The 

crystals were then added to a disti l lat ion flask and gently warmed to 

30°C. The result ing l iquid was then disti l led onto Molecular Sieves 4A. 

Benzene was purif ied by f irst shaking with sulfuric acid (concen

trated) unti l  no darkening appeared in the acid layer. The benzene was 

then added to a disti l lat ion flask and disti l led onto calcium chloride 

(anhydrous). 

A small quantity of very high purity benzene was obtained by frac

tional crystall ization from ethanol, fol lowed by disti l lat ion onto 

anhydrous CaClg-

Solvents for syntheses (methanol, benzene, tetrahydrofuran, ethanol, 

methylene chloride, hexanes, acetone) were al l  reagent grade and used as 
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received. Chromatographic solvents (ethyl acetate, chloroform, methanol, 

carbon tetrachloride) were also al l  reagent grade and used without 

purif ication. 

Polyhalogenomethanes 

Carbon tetrachloride (Fischer Scientif ic) The bulk l iquid 

was dried over CaCl^ (anh), fol lowed by disti l lat ion from at 76°C 

into an amber colored bott le. The l iquid was stored under an atmosphere 

of either nitrogen or argon. 

Bromotrichloromethane (Aldrich) The same procedure for carbon 

tetrachloride was employed, disti l l ing the l iquid at 105°C. 

Carbon tetrabromide (Eastman) The solid was recrystal1ized 

three times from absolute ethanol, fol lowed by prolonged drying under 

vacuum in a desiccator. This process was repeated twice. The f inal 

sample gave an infrared spectrum that agreed very well with the published 

spectrum of Aldrich's. Proton NMR in d-CHCl^ gave no signal. 

Bromoform (Aldrich) The neat l iquid is bulk dried f irst with 

CaClg (anh), fol lowed by disti l lat ion at 51°C under reduced pressure 

from CaClg (anh) onto anhydrous Ba(C10^)2. The l iquid is then stored 

either in an amber colored bott le or in bott les wrapped in foi l  and 

stored in the dark. An inert atmosphere is placed above the l iquid. 

Cobaloxime(II) reagents 

The bis(1igand)cobaloxime(lI) complexes were prepared in a man

ner similar to that of Schrauzer.^ All chemicals used are of reagent 

grade quality. A typical synthesis is outl ined below. 
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CofCgHgOgjg'^HgO (x mole) is added to a thoroughly deoxygenated 

suspension of dimethylglyoxime (2x mole) in MeOH. A two or three 

necked round bottom flask equipped with a magnetic st irr ing bar is 

used. After 40 minutes of stirr ing under nitrogen (or argon), a brick red 

suspension is obtained. The desired axial base (6x mole) is then added. 

I f  the axial base is a l iquid, the neat deoxygenated l iquid is directly 

added to the reaction mixture. I f  the axial base is a solid, two op

tions were employed. I f  the solid was suff iciently soluble in methanol, 

i t  is added as a deoxygenated solution in methanol (25-30 ml). This 

proved most successful in the case of solid nitrogen bases, such as 

nicotinamide. In the event the solid proved too insoluble, as with 

phosphorus bases such as tr i  phenylphosphine, the solid is added to a 

solid addit ion funnel, deoxygenated for 40 minutes, and then attached 

to the reaction vessel containing the cobaloxime(iI). The addit ion 

funnel is inverted and gentle tapping of i ts side drives the solid into 

the reaction slurry. After complete addit ion of any axial base, the 

reaction mixture turns black. Thirty more minutes of stirr ing precede 

f i l tration under inert atmosphere. The black solid is collected on a 

glass f i t  and washed thoroughly with diethyl ether (deoxygenated). In 

the case of pyridine and the substituted pyridine adducts, the diethyl 

ether washes contained 15-20% of the free l igand to prevent loss of the 

axial base during washing. Four hours of a strong argon f low through the 

solid dries the material. Once dry, the solids are air-stable and are 

easily handled. When not in use, the sol ids are stored in a desiccator 

under nitrogen or argon. Yields obtained were normally 90% or better 
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of the theoreti cal. 

Analyses of the cobaloxime ()I) reagents are found in Table I  I  1-5. 

Table I  I  1-5. Analyses of bis(1igand)cobaloxime(iI) complexes 

Ligand 
Molecular 

weight 
% 

yield % Co % C % H % N 

Pyridine 447.4 93.0 13.76±.32® 
(13.17)B 

48.41 
(48.31) 

5.43 
(5.41) 

18.67 
(18.77) 

Nicotinamide 533.5 95.2 10.92±.08 
(11.05) 

--

4 picoline 475.5 95.2 12.57±.10 
(12.39) 

T r i  pheny1phosph i  ne 813.7 94.6 7.01±.12^ 
(7.24) 

64.70 
(64.90) 

5.48 
(5.45) 

6.93 
(6.89) 

^Other preparations of this complex gave % Co values of 12.74*.28 
and 12.77*.18. 

'^Values in parentheses are the calculated percentages for 
Co(dmgH)2*2L. 

' 'Another preparation of this complex gave % Co value of 7.24±.12 
and a third gave a C,H,N analysis of 65-00, 5.43, and 6.73, respec
t ively. 

Orqanocobaloxime(Hi) reagents 

Cobaloxime(l) procedure The method of Schrauzer^ was used to 

prepare the fol lowing complexes: methyl-, monobromomethyl-, dibromo-

methyl-, and al ly1(pyridine)cobaloxime(I!I). The methyl(aquo)-

cobaloxime(l l l) complex was prepared fol lowing the same procedure only 

no pyridine was used. 
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— eg 
OH disproportionatîon The method of Yamazaki and Hohokabe 

was used to prepare the fol lowing complexes: methyl(aquo)-, isopropyl-

(pyridine)-, and n-octyl(pyridine)cobaloxime(I I  I). 

Zn reduction method Benzyl(tr iphenylphosphine(cobaloxime(III) 

18 
was prepared using the procedure of Roussi and Widdowson. 

CH^Co(dmgH)oPPh, preparation 0.96 g (.003 mole) CH2Co(dmgH)2H20 

is suspended in 15 mL CHgClg. 0.80 g (.0031 mole) is added and 

stirred for 10 minutes. The solutions turned homogeneous. 40 mL 

hexanes is added and the solution rotovapped at low heat unti l  crystals 

began to form. One addit ional minute of rotary evaporation is done and 

the bright orange crystals are f i l tered and washed thoroughly with 

hexanes. 

Analyses Table I  I 1-6 l ists the analyses of the various organo-

cobaloxime(l l l) complexes prepared. All complexes were also analyzed 

by NMR and proved to be pure as no extraneous peaks were noted. 

Inorganic cobaloxime(III) reagents 

Schrauzer method Bromo- and chloro(pyridine)cobaloxime(lI I) 

were prepared by the procedure of Schrauzer.^ 

Burkhardt method Bromo- and chloro(tr iphenylphosphine)-

cobaloxime(l l l) were synthesized by the method of Burkhardt and 

59 
Burmei ster. 

Analyses Table I  I 1-7 gives the cobalt analyses for these com

plexes. 
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Table I  I 1-6. Analyses of organocobaloxime(I I  I) complexes 

Comp1 ex 
Synthetic 
method 

Molecular 
weight 

% Co 

CgHgCofdmgHjgpy Cobaloxime(l) 409.4 14. 31±.19 (14.40)3 

CHBr2Co(dmgH)2Py Cobaloxi me(1) 541.4 11. 16±.18 (10.89) 

CHBr2Co(dmgH)2Py Cobaloxi me ( 1) 462.2 12. 55+.21 (12.75) 

CH3Co(dmgH)2Py Cobaloxime ( 1) 383.3 - -

CH3Co(dmgH)2H20 OH disproportionation 322.2 - -

""CgH]yCo(dmgH)2py OH disproportionation 481.5 11. 91±.10 (12.22) 

i-C3HyCo(dmgH)2Py OH disproportionation 411.4 14. 23±.84 (14.32) 

PhCH2Co(dmgH)2PPh2 Zn reduction 642.6 8. 13+.14 (9.l8)b 

CH2Co(dmgH)2PPhg CH^Co(dmgH)2H20 + PPh^ 566.2 10. 25±.26 (10.41) 

^Calculated percentage values in parentheses for RCofdmgHjgL. 

'^Contaminated with BrCofdmgHjgPPhg. 

Table 111-7. Cobalt analyses for inorganic cobaloxime(l l l) complexes 

Complex Method 
Molecular 

weight 
% Co 

CICofdmgHjgpy Schrauzer 403.8 

BrCo(dmgH)2Py Schrauzer 448.2 12.99±.27 (13.15)3 

CICo(dmgH)2PPh^ Burkhardt 587.0 10.081.32^ (10.04) 

BrCo(dmgH)2PPh2 Burkhardt 631.3 9.31±.006 (9.33) 

^Calculated percentage values in parentheses for XCofdmgHjgL. 

'^A second preparation gave a product with 9.82±.05 cobalt 
percentage. 
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Scavenging agents 

Acrylonitr i  le (Aldrich), 1,3-cyc1ohexadiene (Aidrich), di-N-t-buty1 

nitroxide (Eastman), a-phenyl-N-t-buty1 ni trône (Aldrich) were ai l  used 

as received. 

4-Hydroxy-2,2,6,6-tetramethylpiperidinooxy (Aldrich) was recrystal-

l ized twice from acetone. 1-Octene (Aldrich) was dried over MgSO^ (anh) 

and disti l led onto CaClg (anh) at 121°C. 

Stoichiometric Studies 

Stock solutions were prepared as fol lows. The desired amount of 

cobaloxime(l l) reagent is measured out and added to a volumetric 

f lask, fol lowed by a thorough f lushing with argon. The desired solvent 

(acetone or benzene) is then added via transfer needle to mark. 

Thorough mixing is ensured by passage of a mild f low of argon through 

the solution for 20 seconds. The 4-hydroxy-2,2,6,6-tetramethyl-

piperidinooxy stock solution is prepared similarly. 

The bromotrichloromethane stock solution is prepared by f i l l ing 

a 10 mL volumetric f lask with deaerated solvent; 2.5 wL of the poly-

halogenomethane is injected into the solution. 

All stocks stolutions are maintained under a constant posit ive 

pressure of argon by leaving the f lasks attached to the inert gas l ine 

with no exit port. 

Reaction cells (2.0-cm quartz cells) are prepared by adding 0.6 

mL of the cobaloxime(I I) stock solution to either 5.4 mL of the pure 

solvent (experiments with no scavenging agent) or 5.4 mL of the 4-

hydroxy-2,2,6,6-tetramethylpiperidinooxy stock solutions. 
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Alternatively, 6.0 mL of a di lute cobaloxime(II) solution is added to 

-4 
the reaction cell.  Final concentrations of reagents are 2.0-4.0x10 

for the cobaloxime(I I) complexes and 2.87x10 ^ _M for the scavenging 

agent. 

The spectrum of the solution in the Gary cell is measured from 

X600 nm to X420 nm (tr ipheny1phosphine complex in acetone t i tration) 

to A380 nm (pyridine complex in benzene t i tration). 5 pL injections 

of the bromotrichloromethane solution are made unti l  4 or 5 consecutive 

injections lead to minor or no changes in the spectrum. 

Absorbance readings are taken at the maxima for the cobaloxime(I I) 

species, A420 nm for (pyridine)coba1oxime(I I) in benzene and X460 nm 

for (tr iphenylphosphine)cobaloxime(lI) in acetone. The absorbance 

change, Dg-D., is plotted against the ratio moles BrCCI^/moles 

cobaloxime(I I). The intersection of the two straight l ines defined by 

the data, when plotted in the manner above, is taken as the stoichiom-

etry of the reaction. 

Identif ication of Products from Co(dmgH)2Py/CHBr2 Reaction 

The fol lowing four cobaloxime(I I  I) complexes were prepared in the 

usual manner: BrCofdmgHjgPy, CHgCofdmgHÏgPy, BrCHgCofdmgHÏgPy, and 

Br2CHCo(dmgH)2py. Al l  complexes were deemed pure by TLC (si l ica gel) 

analysis using 2:2:1 ethyl acetate:chloroform:methanol. Only one spot 

was seen after development of TLC plates. 
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UV-Vîs spectra 

CH,Co(dmgH)2Py In MeOH, two maxima are noted, A438 nm (e=1070 

^  ̂  cm ^) and A373 nm (e=l840 ^ '  cm ' ) .  Addit ion of two drops concen

trated HCIO^ causes a shift in both maxima to higher wavelengths; X447 

nm (e=1270 ^ '  cm ')  and A392 nm (e=l800 ^ '  cm ^). 

In CgHg, CHgCofdmgHjgPy exhibits a shoulder at X420 nm (e=1260 IM '  

cm S and a maximum at A392 nm (e=5490 ^ ^ cm ^). 

BrCH^CofdmgHj^py Methanolic solutions of BrCHgCofdmgHjgPy ex

hibit two shoulders, the f irst at X420 nm (e=550 M '  cm ^), the second at 

A360 nm (e=l850 ^ '  cm ^). The second shoulder is a very weakly resolved 

feature of the spectrum. Acidif ication of the solution with concentrated 

HCIO^ leads to l i t t le resolution in either shoulder and again causes a 

shift to higher wavelengths of the two spectral features: X440 nm 

(e=457 M. ^ cm ' )  and A365 nm (e=l850 ^ '  cm I). 

Solutions of BrCH2Co(dmgH)2Py also exhibit two shoulders. The f irst 

is at 480 nm (E=l45 JJ1 ^ cm ^ )  and A420 nm (e=690 ^ ^ cm ^ ) .  

Br^CHCoÇdmgHj^py Two shoulders are observed in methanolic solu

t ions: A435 nm (E=380 ^ '  cm ^) and A380 nm (E=1085 '  cm ' ) .  Acidif i

cation (concentrated HCIO^) results in minor shifts of the two shoulders 

to higher wavelengths: A440 nm (E=360 M ' cm ') and A383 nm (E=1085 

M '  cm ' ) .  

Benzene solutions exhibit two very poorly defined shoulders at 

A435 nm (e=490 M '  cm '  ) and A388 nm (e=1310 IK '  cm ' ) .  

BrCo(dmqH)oPy Methanolic solutions exhibit l i t t le i f  any fea

tures in the region of A600 nm to A300 nm. A possible, very weakly defined 
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shoulder is noted around X375 nm (e=l675 '  cm ' ) .  Acidif ication with 

concentration HCIO^ results in no changes in the spectrum. 

Solutions in benzene exhibit a well-defined shoulder at A38O nm 

(e=8lO ^ '  cm ^). 

_|_H NMR spectra 

Table 111-8 l ists the signals arising in the ^H NMR of the four 

cobaloxime ( i l l)  complexes. 

Table I  I  1-8. ^ H NMR of 4 cobaloximes(I I I) (CDCl,, TMS as reference, 
0 . 0 )  ^  

Compound Signal (mult ipl icity) Origin 

CH2Co(dmgH)2py 60.50 
62.19 
67.29-

(singlet) 
(singlet) 
68.71 (several peaks) 

axial CH3 group 
dmgH CH3 groups 
axial C5H5N group 

BrCHgCo^dmgHÏgPy 62.21 
64.64 
67.20-

(singlet) 
(singlet) 
68.60 (several peaks) 

dmgH CH3 groups 
axial CH2Br group 
axial C5H5N group 

Br2CHCo(dmgH)2Py 62.18 
65.71 
67.08-

(singlet) 
(singlet) 
68.39 (several peaks) 

dmgH CH3 groups 
axial CHBr2 group 
axial C5H5N group 

BrCo(dmgH)2Py 62.40 
67.03-

(singlet) 
68.22 (several peaks) 

dmgH CH3 groups 
axial C5H5N group 

Thin 1ayer chromatography and column chromatography 

I .  A mixture of BrCo(dmgH)^py and Br2CHCo(dmgH)2Py is prepared. 

The composit ion of this sample is 46.5% BrCo(dmgH)2Py and 53.5% 

BrgCHCofdmgHÏgPy. This is a 1:1 mole mixture of the two complexes and 

therefore representative of product mixture for the cobaloxime(l l)-
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bromoform reaction. 

Thin layer chromatography (Eastman No. 13181 Sil ica Gel plates) is 

performed on the mixture using a variety of eluents. Once a suitable 

eluent is found, the separation is tr ied on a column. 

Below is a summary of the TLC experiments. 

1. 1:1 Ethyl acetate:CHC1^ ~ good separation is seen. Tail ing in 

both spots noted, BrCofdmgHjgPy tai l ing more than BrgCHCofdmgHjgPy. 

2. 10:10:3 Ethyl acetate:CHC1^:EtOH - very poor separation, less 

tai l ing than 1:1 ethyl acetate:CHCl^ (#1). 

3. 5:5:2 Ethyl acetate:CHCl2:CCl^ - separation similar to 1:1 

ethyl acetate:CHCl2 (#1), tai l ing similar to 1:1 ethyl acetate:CHCl2 

( # 1 ) .  

4. 1:1 CH2Cl2:Ethy1 acetate - two spots are noted but separation 

is not clean, tai l  of f irst spot overlaps with head of second. 

5. 1:1:1 Ethyl acetate :  CHCl 2: CCI -  two spots again are noted. 

Separation is better than 1:1 CHgClgzethyl acetate (#4) but not as good 

as 1:1 ethyl acetate :CHCl^ (#1) or 5:5:2 ethyl acetate:CHCl2:CCl^ (#3)• 

Tail of f irst spot may overlap with head of second. 

6. 2:1 Ethyl acetate :CHCl^ -  separation similar to 1:1 ethyl 

acetate:CHCl2 (#1) with more severe tai l ing in BrCofdmgHÏgPy spot. 

7. 2:1 CHCl2:Ethy1 acetate - separation better than 2:1 ethyl 

acetate:CHCl2 (#6) comparable to 1:1 mixture of same (#1). Tail ing is 

notably less than other solvent systems above. 

8. 2:2:1 Ethyl acetate:CHC1^iMeOH - no separation. 

9. 2:2:1 Ethyl acetate:CHC1^:EtOH - sl ightly better than 2:2:1 
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ethyl acetateiCHCl^rMeOH (#8) but spots st i l l  overlap. 

10. 2:2:1 Ethyl acetate :CHCl^:i"PrOH - better than EtOH substi

tuted system (#9) but separation st i l l  poor at best. 

The net result of the TLC work is that the 2:1 CHCl^^ethyl acetate 

eluent be used in the column chromatography. 

An ion exchange column is employed. A slurry of si l ica gel (Baker 

40-140 mesh) in CHCl^ is prepared and poured into the ion exchange 

column. CHClj containing increasing amounts of ethyl acetate is run 

through the column unti l  the l iquid phase of the column is a 2:1 

CHClj:ethyl acetate mixture. 

A sample of the known BrCofdmgHÏgPy/BrgCHCofdmgHjgPy mixture (-.15 

g) is dissolved in the eluent (20 mL + 3 rtiL CHgClg) and loaded onto the 

column. Elution was then started with 2:1 CHCl^:ethyl acetate at a 1 

drop per second rate. 

No separation is observed during elution. A long, smeared band 

develops in the column, bright yellow at the head, dull brown at the 

tai l .  Proton NMR indicates the head of the band to contain mostly 

CHBrgCo^dmgHjgPy (singlet at 62.18) while the tai l  contains mostly 

BrCo(dmgH)2Py (singlet at 62.36). Intermediate fractions off column show 

a mixture of the cobaloximes(I 11). 

Repetit ion of this procedure using a variety of elution rates (very 

fast to very slow) fai led to produce a separation of bands. 2:1 

CHCl2:ethyl acetate eluent abandoned. 

I  I .  In order to better understand the BrCo(dmgH)2Py/Br2CHCo(dmgH)2Py 

system, the BrCo(dmgH)2Py/CH2Co(dmgH)2Py system is examined. Below is a 
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summary of the TLC work. 

1. 2:2:1 Ethyl acetate :ChCl^:MeOH - very l i t t le separation. 

Sol vent:5.2 cm (CH2Co(dmgH)2Py):0.904 (BrCo(dmgH)2Py):0.846. 

2. 2:2:1 Ethyl acetate:ChCl2:MeOH (freshly prepared and with paper 

envelope in TLC chamber) -  very l i t t le separation. Solvent:5.1 

Rf(CH2):0.78l Rf(Br):0.754. 

3. 2:2:1 Ethyl acetate:CHCl^rEtOH (with paper envelope) -  better 

than 1 or 2 but tai l  of f irst spot overlaps with head of second. 

Solvent:5.5 cm. R^(CH2) = 0.828 R^(Br) = 0.727. 

4. 2:2:1 Ethyl acetate:CHClj: i-PrOH: comparable to 2:2:1 ethyl 

acetate:CHCl2:MeOH (#1). Sol vent:6.2 cm R^(CH2):0.734 R^(Br): 

0 .661.  

5. 40% CCl^ in i-PrOH: fair separation, tai l ing in BrCo(dmgH)2Py 

spot. Sol vent:6.0 cm R^(CH2):0.750 R^(Br):0.608. 

6. 40% CCl^ in EtOH: poorer than I fS ,  40% CCl^ in -PrOH. Overlap 

of bands. Solvent:5.3 cm R^(CH2):0.887 R^(Br):0.792. 

7. 50% CCl^ in i-PrOH: sl ightly better than 40% mixture, #5. 

Sol vent:5.4 cm R^(CH2):0.870 R^(Br):0.722. 

8. 60% CCl^ in i-PrOH: better than 50% mixture, #1. Sol vent:5.2 

cm Rf(CHj):0.837 R^(Br):0.644. 

9. 70% CCl^j in i-PrOH: better than 60% mixture, #8. Solvent:5.1 

cm R^)CH2):0.843 R^(Br):0.6l8. 

10. 85% CCI^ in i-PrOH: better than 70% mixture. Sol vent:5.7 cm 

Rf(CHj):0.632 R^(Br):0.342. 

11. 85% CCI/, in EtOH: comparable to 85% CCI^ in i-PrOH, spots 
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move more rapidly along plate than with i-PrOH mixture. Sol vent:4.9 cm 

Rf(CH^) :0.735 R^(Br):0.531. 

A di lute ethanolic solution in CCl^ is decided upon as eluent. 

Further TLC work is now performed on the dibromomethyl(pyridine)-

cobaloxime(l11). 

12. values of CH^ ,  BrCHg and CHBrgCofdmgHjgPy in 10% EtOH in 

CCl^. Solvent:6.0 cm R^lCH^):0.533 RffBrCHgïzO.SOO R^lCHBr^):0.467. 

The fol lowing are now separations (TLC) of BrgCHCofdmgHjgPy and 

BrCofdmgHjgPy. 

13. 10% EtOH in CCl^. Clean separation not achieved, overlapping 

of spots noted. Sol vent:5.4 cm R^(Br2CHCo(dmgH)2py):0.537 

R^fBrCofdmgHjgPy):0.370. 

14. 10:1:1 CCl^:EtOH:Ethyl acetate - Separation is cleaner than, 

eluent without ethyl acetate, #13, but overlapping st i l l  noted. 

15. Neat CCI2^: no movement of Br2CHCo(dmgH)2Py or BrCo(dmgH)2Py. 

16. 5% EtOH in CCl^: good separation. Solvent 5.0 cm. 

R^(CHBr2):0.470 R^(Br):0.200. 

17. 5% CHgClg in CCl^: no movement of BrgCHCofdmgHjgPy or 

BrCofdmgHjgPy. TLC f inal results: Use 4% EtOH in CCl^ on column. 

Column chromatography A four foot 3/4" glass column is packed 

with si l ica gel (Baker 40-l40 mesh) -  4% EtOH in CCl^ slurry. 

0.1405 g of a 1:1 mole composit ion mixture of BrCofdmgHjgPy and 

BrgCHCofdmgHjgPy is dissolved in 8 mL 4% EtOH in CCI^ and 2 mL CHgClg; 

The l iquid is loaded onto the column and eluted with 4% EtOH in CCl^ at 

the rate of 1 drop/3 second (exit ing the column). 
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Two bands develop. A yellow band, identif ied as Br2,CHCo(dmgH)2,py 

by proton NMR (singlet at 62.21), elutes f irst off column fol lowed by a 

brown band, identif ied as BrCofdmgHjgPy (singlet at 62.40). No yields 

taken. 

Identif ication of Products of Co(dmgH)2Py + CHBr. 
Reaction in CgHg 

50 mL CgHg is deoxygenated thoroughly with argon in a 1 neck 100 mL 

round bottom f lask. 2.461 g (5-59 mmole) Co(dmgH)2'2py is added and dis

solved by st irr ing. 8.0 mL (91.5 mmole) deoxygenated CHBr^ is added with 

stirr ing. 

After 30 minutes, the reaction mixture is added to 170 mL hexanes in 

a single neck 500 mL round bottom f lask. The volume is reduced to one-

half i ts original by rotovapping. 80 mL hexanes is then added back and 

the precipitate f i l tered and washed with 150 mL hexanes. Thorough drying 

is achieved by storing under vacuum overnight. Yield:2.495 g. 

Proton NMR of yellow brown product mixture shows two singlets in 

region of interest, 62.40 and 62.19. Peak height ratio is 71%, the 

62.40 peak the tal ler. 

0.2872 grams of product is dissolved in 15 mL 4% EtOH in CCl^, 5 mL 

CH2CI2, and 0.5 mL EtOH. I t  is loaded onto a four foot, 3/4" wide si l ica 

gel column, 4% EtOH in CCI^ being the mobile phase. 

Elution with 4% EtOH in CCl^ is begun at the rate of 1 drop per 

second. Two bands develop. Separation is approximately 23 cm. The 

f irst yellow band is collected as a 100 mL fraction. 

After complete elution of the yellow band, the brown band is eluted 
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off with 25% EtOH in CCl^ f irst, fol lowed by 1:1 EtOHzCCl^ when approxi

mately half the band collected. Total volume of fraction is 500 mL, 

Both fractions are rotovapped dry. 

Yellow band analyzes as fol lows: 62.22 singlet and 65.75 single in 

'h NMR: C,H,N analysis: 30.79% C, 3-74% H, 12.64% N. For 

CHBrgCofdmgHjgPy: 62.18 + 65.71 singlets in 'h NMR. C,H,N expected 

31.1% C, 3.73% H, 12.94% N. 

Brown band analysis: 62.41 singlet in ^H NMR. C,H,N analysis: 

35.34% C, 4.54% H, 15.58% N. For BrCofdmgHjgPy: 62.40 singlet in 

'h NMR C,H,N expected: 34.8% C, 4.27% H, 15.6% N. 

Result 

Cobaloxime(l l) reaction with CHBr^ yields only two products, 

dibromomethylcobaloxime(I I  I) and bromocobaloxime(II1). 

Unsuccessful Syntheses of Trihalomethylcobaloximes(I I  I) 

Conversion of XCo(dmqHÏnPy to charged 
cobaloxime(I 111 complex with Àg^ 

To facil i tate the separation of CX^CofdmgHjgpy and XCo(dmgH)2Py, at

tempts were made to convert XCofdmgHjgPy to a charged complex such as 

HgOCo(dmgHjgPy*. 

Addit ion of AgNO^ to suspensions of CI Co (dmgH)2Py in absolute EtOH 

resulted in l i t t le or no formation of AgCI over a period of seven hours. 

In (CHgjgCO or CH^NOg, formation of a white precipitate occurred within 

the f irst 10 minutes of mixing. After 1 hour of st irr ing, conversion 

appeared complete. After f i l tration through Celite, evaporation of 

solvent yielded a very pale brown powder. Digestion in concentrated 
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HNOg revealed AgCl to be present in brown product. No analyses were 

done to determine nature of brown product. 

Addit ion of AgNO^ to a mixture of CCIgCofdmgHjgPy/CICofdmgHjgPy ap

parently destroys the organocobaloxime(i11) as ^H NMR of the f inal prod

uct mixture (after f i l tration through Celite and removal of solvent 

(CHgjgCO or CHgNOg) shows no signal at 62.20. Further attempts along 

these l ines were not tr ied. 

Ag„0 synthes is 

Attempts to extend the synthesis for NOgCHgCofdmgHjgpy to 

CXgCofdmgHjgPy fai led. 

Following the procedure of Randaccio et al.,^^ substituting 

CHIg for CHgNOg and using either or C^H^NO^ as solvent, no 

CIgCofdmgHjgpy was detected even after 72 hours of reaction. 

Zn reduction method and Schrauzer methods 

Both of these methods proved unfruitful. The Zn reduction 

1A 
method yielded a mixture of CICofdmgHÏgPy and CCIgCofdmgHjgPy 

after several hours of reaction employing a large excess of Zn powder. 

The Schrauzer method^^ produced the expected mixture of 

CICofdmgHjgpy and CCI^CofdmgHÏgPy, as evidenced by proton NMR. 

Washing with 250 mL HgO resulted in minimal enrichment of the 

o rganocoba1 ox i  me(I I  I). 

Further syntheses of CXgCofdmgHjgPy were not tr ied. 
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Stoichiometry of the CICo(dmgH)9PPh^/CcHt;N and 
CICo(dmgH)<^PPh^/4-CH^C[;HiiN reactions 

In a benzene solution, ClCo(dmgH)2PPh2 exhibits a shoulder at X480 nm 

(e=240 M '  cm ^) and a peak at A318 nm {e=22kO M, ^ cm ^). Addit ion of 

an excess of pyridine results in the loss of the shoulder at A480 nm. 

The effect of pyridine on the A318 nm maximum was not examined. Addi

t ion of an excess of 4-picoline produces a similar effect upon the 

ClCofdmgHjgPPhg spectrum. 

Spectral t i trations were performed to determine the stoichiometry 

of the reactions. Loss of the shoulder at A480 nm was used to monitor 

the t i tration. For the pyridine reaction, two values obtained were 

0.970 and 1.020, their average 0.995-.035. The 4-picoline reaction gave 

three values, 1.000, 1.020, and 1.020, for an average value of 

1.013*.012. In al l  cases, a sharp break was not seen in the t i tration 

plots but rather a sweeping curve was noted about the region of the end-

point, indicative of an equil ibrium condit ion. 

Kineti cs 

Conventional methods 

Carbon tetrachloride reactions Stock solutions of reagents were 

prepared as fol lows. 

Cobaloxime(lI) reagents The desired amount of the 

cobaloxime(1 I) complex is measured out and added to a volumetric f lask, 

usually 50 or 100 mL in size. The f lask is f i t ted with a rubber septum 

and attached to an inert gas l ine. The f lask is then purged 45 minutes 

with a strong f low of argon. The desired solvent, previously 
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deoxygenated 1.5 hours by passing argon through the neat l iquid, is then 

added to the volumetric f lask by use of a transfer needle. Thorough 

mixing of the cobaloxime(l l) solution is achieved by briefly (20 

seconds) passing a mild f low of argon through the solution. A posit ive 

pressure of argon is maintained above the solution by removing the 

exit needle from the f lask and keeping the f lask attached to the inert 

gas l ine. After one hour, a fresh stock solution is prepared in the 

manner just described. 

Carbon tetrachloride solutions Two reagent solutions were 

employed in these experiments. Use of either type of solution gave 

identical results. 

The f irst stock solution of carbon tetrachloride is the neat l iquid 

i tself. Approximately 40 ml of the neat reagent is transferred to a 

small amber t inted bott le. The bott le is f i t ted with a rubber septum 

and the l iquid is deoxygenated by passing a mild argon f low through the 

l iquid for one hour. When not in use, the bott le is left attached to 

the inert gas l ine. A value of 10.14 ^ is used as the concentration 

of the neat reagent. The concentration in the reaction cell is calcu

lated by appropriate di lution expression = MgVg and knowing the 

volume of carbon tetrachloride injected and the f inal volume the cell 

contained. 

The second stock solution is a di lute carbon tetrachloride solution 

in acetone. This stock solution was used only for the tr iphenyl-

phosphinecobaloxime(II) reactions in acetone. 

A Barnes dropping bott le is f i t ted with a rubber septum and weighed 
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accurately. Approximately 28 mL of acetone is added and the l iquid is 

deoxygenated 30 minutes with a strong flow of argon. The bott le is 

reweighed and the difference in weight is the weight of acetone in the 

bott le. Using 0.7852 g/mL as the density of acetone, the volume of 

acetone is calculated. A known volume of deoxygenated carbon tetra

chloride is added by syringe to the bott le. This volume is total led 

with the volume of acetone already in the bott le to give the f inal 

volume. The bott le is weighed a third time to give the weight of carbon 

tetrachloride added. The concentration of carbon tetrachloride is then 

calculated. Concentration in the reaction cell is calculated in a 

manner identical to the case where neat carbon tetrachloride is used. 

Kinetic measurements A Gary 219 spectrophotometer equipped 

with a constant temperature cell holder was employed to monitor the 

reaction between cobaloxime(I I) and carbon tetrachloride. The de

crease in absorbance due to the loss of cobaloxime(l l) was fol lowed 

either by single wavelength monitoring or by overlay spectra. The 

latter method was used only in the study of slower reactions, i .e., low 

concentrations of carbon tetrachloride. 

The monitoring wavelength, in the case of a single wavelength fol

lowed with t ime, varied with the nature of the axial l igand on the 

cobaloxime(l l) and the solvent and corresponded to the maximum exhibited 

by the cobaloxime(l l) reagents. The fol lowing wavelengths were used in 

acetone: A460 nm, tr i  phenylphosphine complex; X420 nm, pyridine complex; 

and X420 nm, 4-picoline complex. In benzene, the monitoring wavelengths 

were A460 nm, tr ipheny1phosphine complex; X430 nm pyridine complex; and 
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X430 nm 4-picoline complex. When overlay spectra monitoring was em

ployed, the scans usually covered the range A600 nm to A400 nm or A38O 

nm. 

Reaction cells were prepared in a variety of ways, the variation 

arising in the order of components added. Identical results were ob

tained regardless of the order of addit ions. The most common and pre

ferred preparation is outl ined below. 

2.0 cm quartz cells were deoxygenated by passing argon vigorously 

through them for one hour. 5.4 mL of deoxygenated solvent is added 

by syringe to the quartz cell.  The required microliter amount of 

carbon tetrachloride is added to the cell next. When di lute carbon 

tetrachloride solutions were employed, less pure solvent was added to 

the cell in l ieu of that added when the di lute carbon tetrachloride was 

injected to the cell.  

The quartz cell now with solvent and carbon tetrachloride is placec* 

in the thermostatted cell holder in the Gary 219 spectrophotometer. 

For room temperature runs, the cell was al lowed to sit in the cell 

holder for 25 minutes. Higher or lower temperature runs saw the quartz 

cell resting in the cell holder for 45 minutes. 

After suff icient t ime thermostatt ing, 0.6 mL of the cobaloxime (I I  ) 

reagent is injected into the Gary cell and the cell is shaken two or 

three times to ensure thorough mixing. The decrease in absorbance at 

the appropriate wavelength is then monitored unti l  the reaction has 

reached an apparent inf inity value of absorbance. Due to a slow 

secondary reaction, the absorbance at infinity tends to drift slowly 
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downwa rd. 

Data analyses Several methods of analysis were used to 

interpret the pseudo-first-order rate data obtained. 

Early runs were analyzed by f irst submitt ing the data to a Kedzy-

Swinbourne analysis to obtain A step size of 1.4-1.6 half l ives 

was used in this analysis. Suitable In(D^-D^) vs. t ime plots were then 

made using this value of D^. 

Later runs were analyzed by computer analysis, using either a 

obtained in the manner above, or by computer. The data were 

then analyzed by use of least squares f i t t ing program. 

Second order rate constants were obtained by making plots of kobs 

vs. concentration of carbon tetrachloride. Refinement of the rate con

stant was achieved by least squares analysis. The f inal value of k^ is 

found by dividing the value obtained from least squares analysis by two. 

Pseudo-first-order rate plots were l inear through three half l ives 

or better. Plots of kobs vs. [RX] were also l inear and passed through 

the origin. 

Bromoform reactions These reactions were fol lowed in a manner 

identical to the carbon tetrachloride reactions with the fol lowing 

exceptions; 

(1) Neat bromoform was used in al l  cases. A value of 11.44 ^ was 

used for the concentration of the neat l iquid. 

(2) Data in some instances were collected directly into the com

puter used for analyses and stored on disk. 
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Scavenging in the carbon tetrachloride reactions The details 

for experiments of this nature are identical to the experiments done 

without any scavenging agents present with the fol lowing addit ions. 

Scavenging agents were added after addi t ion of carbon tetra

chloride but prior to addit ion of cobaloxime(l l) In the case of 

solid scavenging agents, highly concentrated stock solutions were pre

pared in the same manner used to prepare the cobaloxime(l I  ) stock 

solutions, in the make-up of the reaction cells, less solvent was 

added to the cell to compensate for that solvent brought in by injection 

of the scavenging agent solution. This method was used for the scaveng

ing agents a-phenyl-N-t-butylnitrone and 4-hydroxy-2,2,6,6-tetramethyl-

pi peri dinooxy. 

For l iquid reagents, such as 1-octene, di-N-t-butylnitroxide, 

acrylonitr i  le, and 1,3-cyclohexadiene, the neat l iquid or stock solu

t ion, after deoxygenation with argon, was injected into the reaction 

cell.  Concentrations then were calculated as fol lows: 

1. 1-Octene. A molarity of 6.37 M was calculated for the neat 

l iquid and used in the di lution calculations. 

2. Di-t-buty1 nitroxide. A concentrated stock solution, 1.50 ^ 

in concentration was prepared by addit ion of 1.079 g of the l iquid into 

a 5.0 mL volumetric f lask fol lowed by addit ion to mark with solvent. 

3. Acryloni tr i  le. A molarity of 15-19 M was calculated for the 

neat reagent. 

4. 1,4-Cyclohexadiene. A molarity of 10.57 was calculated 

for the neat reagent. 
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In some runs with low concentrations (<1.5x10 ^ hi) of 4-hydroxy-

2,2,6,6-tetramethylpiperidinooxy, the scavenging agent and cobaloxime(I I) 

were prepared as a single stock solution, i .e., both solids were 

added to the same f lask. The results obtained were identical to runs 

of same scavenging agent concentration where two separate stock solutions 

were prepared. 

Flash photolysis init iated reactions 

BrCCl, and CBr,^ reactions with cobaloxime(l l) Stock solutions 

of isopropyl(pyridine)cobaloxime(I I  I) were prepared by adding the 

desired amount of the complex to a volumetric f lask (usually .02 g in 

a 250 mL f lask). The f lask with solid is thoroughly deoxygenated with 

argon fol lowed by addit ion of deoxygenated benzene via transfer needle. 

Alternatively, benzene is added to the f lask, deoxygenated for one hour, 

the cobaloxime(l l l) reagent then added, and deoxygenation for 20 addi

t ional minutes, in the event of any loss of benzene during deoxygena

t ion, i t  is compensated for by addit ion of deoxygenated benzene by 

syringe to mark. The f lask is wrapped in foi l  at al l  t imes the organo-

cobaloxime(11 I) is in solution. 

BrCCIg was deoxygenated as the neat l iquid. CBr^ stock solutions 

were prepared similarly to the organocobaloxime(lI I) stock solutions. 

Solutions of molarity approximately 1.5 ^ were prepared. 1-Octene was 

deoxygenated as the neat l iquid. 

Reaction cells were prepared by adding 6.0 mL of the organo-

coba1oxime(11 I) solution to a thoroughly deoxygenated (one hour sweep 
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with argon) quartz cell.  The polyhalogenomethane was then added by 

microsyringe, fol lowed by 1-octene i f  desired. The quartz cell is then 

wrapped in foi l  unti l  transported to a constant temperature water bath. 

After 35 minutes of thermostatt ing, the quartz cell is quickly moved 

to the cell holder of the f lash photolysis unit. A 25.6 J f lash (of un-

f i l tered UV-visible radiation from fast extinguishing Xenon f lash lamps 

In the Xenon Corporation's Model 710 system)^' is then applied and the 

increase in transmittance due to loss of cobalnxime(1 I) (formed in the 

f lash) is recorded on the oscil loscope. Percent transmittance is con

verted to absorbance by application of appropriate formulas. First-

order rate constants were obtained by least squares analysis. Second-

order rate constants were also obtained by least squares analysis of 

a plot of kobsd vs. concentration of polyhalogenomethane. 

Test reactions employing carbon tetrachloride in place of the 

brominated analogs were performed in a similar manner, only the quartz 

cell was transferred to a Gary 219 spectrophotometer to fol low the 

absorbance decrease. Results agreed well with the values obtained by 

conventional means. 

The amount of cobaloxime(l l) produced in the f lash was determined 

by repeating the above experiments with no polyhalogenomethane present. 

The visible spectrum was recorded before and after the f lash. Using 

the fol lowing epsilon values, 3554 '  cm '  for )pyridine)cobaloxime(11) 

and 1450 ^ ^ cm ^ for isopropyl(pyridine)cobaloxime(11!), the amount 

of (pyridine)cobaloxime(I I) was calculated. 
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Activation parameters 

Kinetic measurements were made fol lowing the details already pre

sented at the desired temperatures. For low temperature runs on the 

Gary 219 spectrophotometer, dry nitrogen was swept through the cell 

holder area to prevent fogging of the quartz windows. 

Data analyses were handled by submitt ing the results obtained 

to computer f i t t ing, using the Eyring equation as f i t .  

Determination of molar absorptivit ies for absorbing species 
in (pyridine)cobaloxime(I 11) ^ carbon tetrachloride-
?-hydroxy-2,2,6,6-tetramethylpiperidinooxy -
benzene system 

Kinetic measurements fol lowing the procedures outl ined earl ier 

were performed. The data collected were submitted to least squares analy

sis. Rate constants obtained agreed well with the expected values and 

also agreed well between calculated and experimental values. 

Several sets of kinetic runs were done, a range of carbon tetra

chloride concentrations being covered. The f irst set of data obtained 

involved only runs where no scavenger was employed. The crit ical value 

desired in these runs is AD, the overall change in absorbance for the 

kinetic run. A total of 18 runs were done, the value of AD fal l ing in 

the range 1.1 to 1.2 absorbance, the average value being 1.1486.024 for 

the experimental trace and 1.157*.040 for the computer calculation. 

The fol lowing expression (41) was then used to calculate the sum 

^Cl(Co)py ^ ^^^lg(Co)py ^ ^(Co)py b-[(Co)py] 

of the epsilons for chloro(pyridine)cobaloxime(,i. l  I) and 
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tr ichloromethyl(pyridine)cobaloxime(I I  I). b is the cell path length 

(2.0 cm in the actual experiment) and the epsilon for (pyridine)-

cobaloxime(I I) in benzene was measured independently at 3646*61 M~' 

cm The concentration of (pyridine)cobaloxime(lI) was held constant 

-4 
at 1.980x10 ^ for al l  runs. 

Using AD(expt) gave a value 1493*120 M ^ cm"^ for the sum of the 

epsilons and AD(calc) gave a value of 1449*201 cm The average 

- 1  - 1  
of these two values, 1471*161 ^ cm ,  was used as the sum of the 

eps i Ions. 

A second set of experiments employing very high concentration of 

4-hydroxy-2,2,6,6-tetramethylpiperidinooxy so that i t  contributed a 

constant background was also done. These data were analyzed as above 

and gave the fol lowing AD values; 1.048*.019 for the experimental 

traces and 1.041*.015 for the calculated values. 

Expression 2 was then used to calculate the epsilon for chloro-

(pyridine)coba1 oxime(I I  I). 

D/ \ -  AD 

^CI(Co)pv°b.t°c£)py]^ • 

Again, al l  runs employed [(Co)py]^ = 1.981x10 ^ ^ and a 2.0 cm 

cell.  

Using expression 42 gave the fol lowing values for the epsilon of 

chloro(pyridine)cobaloxime(111) in benzene: 670*38 M '  cm '  (expt) 

and 693*48 ^ '  cm '  (calc). The average value is 682*43 ^ '  cm ' .  

The epsilon for tr ichloromethyl(pyridine)cobaloxime(l1!) was 

determined by subtracting the result from the second set of experiments 
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- 1  - 1  
from the f irst set of experiments. A value of 789*167 ^ cm was 

found. 

4-hydroxy-2,2,6,6-tetramethylpiperidinooxy was found to have an 

epsilon of 9.4*0.2 IM ^ cm ^ by measuring the absorbance of solutions 

of known concentration. 

Repeated measurements for (pyridine)cobaloxime(lI) gave a f inal 

epsilon of 3554*72 ^ ^ cm '  for the complex in benzene. 

Mathematîcal modeling of the reaction sequence repre
sented by equations 30-32 

The data from experiments involving 4-HTMPO as a competitor/ 

scavenger for the tr ichloromethyl radical intermediate were compared 

and contrasted with simulated data. The GEAR routine,a predictor-

corrector forward integration system solver, was used to generate data 

based on the mechanism proposed in equations 30-32. All computations 

were performed on an IBM 3600 computer. 

Two sets of computations were done. The f irst was designed to 

determine the k^/kg ratio. The second was to compare actual and simu

lated absorbance curves. 

For both sets of computations, the (pyridine)cobaloxime(11) reac

t ion with carbon tetrachloride in benzene was selected as the system to 

be modeled. The necessary parameters were k^ = 0.558 ^ s ^ (experi

mental ly determined) and k^ = 8.0x10^ IM '  s '  (arbitrari ly selected). 

Several sets of data were then generated by varying the value of k^. 

Values used were 1.0, 1.2, 1.4, 1.5, and 1.6x10^jM ^ s \  Concentra

t ions of reactants were held f ixed at one particular set of values 
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throughout these computations so that only the effect due to variation 

in kj could be observed. 

The simulated data produced by these computer runs were then sub

jected to the same analyses as the experimental data. The analyzed 

computer data were then plotted on the same curve (Figure 111-5) as 

the analyzed experimental data. Simple observation led to the best f i t  

ratio of k^/kg. 

The second set of computations involved taking the ratio of k^/kg 

as 1.8 and generating several data sets using actual experimental con

centrations of reactants and then comparing the computer generated and 

experimental absorbance vs. t ime curves. Excellent agreement was ob

served in most cases further supporting the k^/kg ratio as 1.8. 
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APPENDIX. SUPPLEMENTAL DATA 

Table l l l-A-1. Kinetic data^ for the reaction of CCl/j and Co(dmgH)2PPh2 
at 25.0°C in acetone 

103[CC1.]/ 
M 4 

1O^k^bs/ 
s-1 

k ] ^ /  
M"' s-1 

103[CC1.]/ 
M 

lO^kobs/ 
s-1 

4.98 2.88 0.289 (35.0 23.3 0.333)= 

5.08 3.20 0.315 35.3 21.6 0.306 

5.10 3.30 0.324 42.7 26.8 0.314 

(5.15 3.25 0.315)C 46.8 28.1 0.300 

5.23 3.30 0.315 47.3 29.6 0.313 

8.58 4.99 0.291 48.4 29.7 0.307 

17.1 10.5 0.329)^ 51.2 30.4 0.301 

(17.5 11.5 0.329)= 51.2 30.4 0.297 

18.6 11.5 0.309 (51.2 33.0 0.322)= 

19.0 11.5 0.303 (52.5 36.0 0.343)= 

19.3 12.0 0.311 53.7 32.6 0.304 

29.0 17.8 0.307 55.1 33.1 0.300 

(29.1 19.5 0.335)G 60.9 36.2 0.298 

29.2 17.6 0.301 68.2 44.9 0.329 

29.7 18.1 0.305 (68.2 45.7 0.335)= 

(34.2 22.8 0.333)= 76.7 45.9 0.299 

34.7 21.0 0.303 85.1 51.9 0.305 

(90.2 60.5 0.335)= 

®T = 25.00-25.07°C; [CotdmgHj.fPPh^)]. = (1.9-2.5) x lO"^ M, added 
as Co(dmgH)2'2PPh2. 

""Less rel iable values are given in parentheses. 
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Table 1 l l -A-2. Kinetic data® 
Co(dmgH)2PPh2 

for the reaction of CCI. 
at T ^ 25°C in acetone 

and 

T/°C IO3[CCI^]/M 

15.74 8.58 2.76 0.161 

(17.1 7.14 0.209)C 

42.4 14.1 0.166 

68.2 22.7 0.166 

85.1 27.1 0.159 

34.61 (3.43 6.84 0.997)^ 

(6.86 9.84 0.717)^ 

8.58 11.9 0.693 

10.3 15.2 0.738 

12.9 17.7 0.686 

17.1 20.1 0.588 

(30.8 43.8 0.711)^ 

37.6 44.3 0.589 

42.7 47.8 0.560 

47.8 56.4 0.590 

54.6 62.8 0.575 

68.2 82.2 0.603 

= 25.00-25.07°C; [Co(dmgH) (PPh )] = (1.9-2.5) x lO"^ M, added 
as Co(dmgH)2-2PPhj. ^ ^ "  

"k, -  kobs/ZtCC'»:-

^Less rel iable values are given in parentheses. 
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Table III-A-3. Kinetic data® for the reaction of CCI. with 
CotdmgHÏgPPhg in benzene 

T/°C 10^[CCli^]/M k iV s"' 

19.67 17.1 2.25 0.0658 

51.2 7.61 0.0743 

85.1 13.6 0.0799 

119 25.9 0.109 

169 27.5 0.0814 

25.0 25.7 5.35 0.104 

52.1 11.9 0.114 

78.3 15.5 0.099 

82.3 18.9 0.115 

104 25.0 0.120 

167 34.5 0.103 

34.44 8.58 3.08 0.179 

17.1 6.58 0.192 

59.7 23.9 0.200 

85.1 36.3 0.213 

added as 
= 25.00-25.07°C; [Co(dmgH) 

Co(dnigH)2'2PPh^. 
(PPh^)]^ = (1.9-2.5) 

-zi 
x 10 ^ M, 

= k,bs/2[CCl4]. 
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Table 111-A-4. Kinetic data^ 
CofdmgHjgPy in 

for the reaction of 
benzene 

CCl^ with 

T/°C 10^[CC1^]/M k, V s-1 

10.88 8.58 2.93 0.171 

25.7 8.44 0.164 

34.2 13.9 0.203 

51.2 19.1 0.187 

85.1 33.8 0.198 

24.96-25.00 5.15 5.82 0.565 

(6.38 8.04 0.630)C 

(12.8 16.1 0.629)C 

(13.5 17.4 0.644)C 

17.1 19.4 0.567 

(20.4 25.4 0.623)C 

27.4 32.6 0.595 

(33.8 46.6 0.689)= 

39.3 40.6 0.601 

51.2 59.5 0.581 

(54.1 69.6 0.643)= 

34.77 5.15 10.5 1 .02 

8.58 21.7 1.26 

17.1 41.4 1.21 

38.4 89.9 1.17 

^^CofdmgHÏgPylo = (2.1-2.4) x 10 ^ M, added as CofdmgHig^Zpy. 

' " l  -

''Less rel iable value. 
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Table III-A-5. Kinetic data^ for the reaction of CCI, with 
Co(dmgH)2L (L 9^ PPhj) at 25.0°C in acetone and benzene 

Axial base 
lO^tCCI^l/M k j V ' s " '  

pyridine acetone 4.26 16.3 1.91 

4.39 19.0 2.16 

6.93 29.1 2.10 

13.4 50.8 1.90 

13.7 52.3 1.91 

18.1 71.1 1.97 

19.4 73.3 1.90 

4-picoline acetone 1.98 14.5 3.66 

4.24 29.2 3.44 

5.93 42.3 3.57 

7.91 56.5 3.57 

10.6 72.2 3.41 

4-pi coli ne benzene 3.80 7.98 1.05 

6.65 13.8 1.04 

7.54 15.9 1.05 

12.1 26.5 1.10 

24.1 50.0 1.04 

^^CofdmgHjgLlg = (1.0-2.1) X 10 added as Co(dmgH) 2-2L. 



www.manaraa.com

177 

Table III-A-6. Kinetic data^ for the reaction of CHBr- wi th 
CofdmgHjgPy in acetone and benzene 

T/°C Solvent lO^tCHBrgl/M 10^ kobs/: ' '  I" 

14.49 C6"6 0.762 0.356 0.233 

1.90 0.988 0.260 

5.69 2.80 0.246 

6.64 3.12 0.235 

18.75 10.3 0.275 

24.96 (CH^j^CO 0.762 2.11 1.38 

0.952 2.37 1.24 

1.14 2.77 1.22 

3.80 8.67 1.14 

25.00 C6"6 0.476 0.505 0.530 

0.952 0.904 0.475 

1.90 1.76 0.463 

8.52 8.75 0.513 

34.78 C6"2 0.762 1.32 0.866 

0.953 1.55 0.813 

1.90 3.15 0.829 

3.33 5.37 0.806 

4.75 7.80 0.821 

a [CofdmgHjgPylo = (1.9-3.4) 
- U  

X 10 |4 added as ; CofdmgHÏg' 2py. 

b 
h = kobs'Z'CHBr ] .  
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Table III-A-7. Kinetic data^ for the reaction of CHBr_ with 
CofdmgHÏgPPhg in acetone and benzene at 25.0*C 

Solvent lO^LCHBr^l/M 'O'kobs/:" '  s" '  

Acetone 0.526 0.202 0.192 

0.842 0.367 0.218 

1.05 0.460 0.219 

2.10 0.934 0.222 

2.62 1.14 0.218 

3.14 1.40 0.223 

3.67 1.87 0.255 

4.19 1.90 0.227 

4.70 2.44 0.260 

5.22 2.89 0.277 

Benzene (4.75 0.449 0.047)^ 

11.33 1.89 0.083 

23.33 3.40 0.073 

^^CoCdmgHjgPPh.lQ -  (1.9-2.1) x lO"* M. 

""k, = kobs/2[C"Br,]. 

^Unreliable data, 
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Table III-A-8. Kinetic data 
CofdmgHjgPy 

^ for the reaction of BrCCl 
in benzene 

2 with 

T/°C lO^LBrCClj 

14.89 (0.506 4.91 4.9)C 

1 .69 24.5 7.2 

3.37 45.6 6.8 

5.88 93.6 8.0 

8.37 119 7.1 

25.35 0.506 10.6 10.5 

1 .69 29.7 8.8 

3.37 59.7 8.9 

4.21 87.8 10.4 

5.04 99.8 9.9 

5.88 111 9.5 

6.71 134 10.0 

10.0 183 9.2 

35.45 0.506 16.0 15.8 

1.69 45.2 13.4 

5.04 142 14.1 

6.71 166 12.4 

a By photolysis of (CH^) gCHCofdmgHjgPy in benzene. 

b 
h - kobs/Z'BrCCI,]. 

c 
Unreliable data. 
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Table 1 I I-A-9. Kinetic data^ 
CofdmgHjgPy in 

for the reaction of 
benzene 

CBr^ with 

T/°C 10^[CBr^]/M kobs/:" '  
10-3k,b/M-'s-'  

5.91 0.542 27.1 2.50 

1.08 57.2 2.65 

2.15 87.5 2.04 

5.26 212 2.02 

6.52 250 1.92 

14.21 0.525 26.1 2.49 

1.31 73.7 2.81 

2.59 157 3.03 

3.85 194 2.52 

5.09 266 2.61 

25.02 0.521 52.6 5.05 

1.30 117 4.50 

2.57 239 4.65 

5.06 464 4.58 

^CofdmgHlgPy generated by photolysis of (CH2)2CHCo(dmgH)2Py. 

"k, = K„bs /2[CBr^]. 
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Table l l l -A-10. Kinet ic data for  the react ions of  BrCClg and CCI4 
wi th Co(dmgH)2py in benzene at  25.0°C in the presence 
of  4-HTMPO 

lo'^ [4-HTMPO]/M 10^[RX]/M kcb;/ : " '  
kobs 

[RX]k,  

Part  1.  BrCClg (k^ = 938 1 3- I )  

0.28 5.05 75.4 1.59 

1.10 5.87 71.7 1.30 

2.20 5.85 60.6 1.10 

54 5.88 47.4 (0.86) 

54 10.9 102.9 1.01 

60 1.31 12.9 1.05 

60 2.81 18.5 (0.70) 

Part  2.  CCI4 (k^ = 0.586 m' • '  s- ' )  

1.00 1.71 1.54 X lO'Z 1.54 

1.00 4.27 3.60 X 10~^ 1.44 

5.00 1.71 

C
M
 1 0

 

X
 1 .11 

5.00 4.27 2.85 X 10"^ 1.14 
~2 

0.94 10.1 1.71 9.4 X 10 0.94 

10.1 4.27 2.44 X 10"^ 0.98 

18-66 0.51-6.8 1 . 0  
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GENERAL SUMMARY 

A convenient,  c lean, and ef f ic ient  method for  the product ion of  

superoxide ion in aqueous solut ion has been developed. The ut i l i ty  of  

th is method has been demonstrated by employing i t  as the source of  0^ 

in the study of  the react ions of  superoxide ion wi th several  Co( l l l )  

complexes and ferr ic in ium ion. These react ions obey a second order 

rate law and proceed through an outer sphere electron t ransfer 

mechanism. Some conclusions about the Ogfaqj /Og electron sel f -exchange 

rate constant were made. 

The react ion of  var ious polyhalomethanes and cobaloxime (  I  I  )  a lso 

obeys a second-order rate law and proceeds by a halogen atom abstrac

t ion as the in i t ia l  step in the mechanism. The f ree radical  nature of  

the mechanism was demonstrated through the use of  radical  t rapping 

agents.  Mathematical  s imulat ions support  the proposed mechanism. 
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